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Abstract

In this paper, the modelling of extreme rainfall is carried out in Pakistan by

analysing annual daily maximum rainfall data via frequentist and Bayesian

approaches. In frequentist settings, the parameters and return levels of the best

fitted probabilistic model (i.e., generalized extreme value) are estimated using

maximum likelihood and linear moments method. On the other side, under

the Bayesian framework, the parameters and return levels are calculated both

for noninformative and informative priors. This task is completed with the

help of the Markov Chain Monte Carlo method using the Metropolis-Hasting

algorithm. This study also highlights a procedure to build an informative prior

through historical records of the underlying processes from other nearby

weather stations. The findings attained from the Bayesian paradigm demon-

strate that the posterior inference could be affected by the choice of past

knowledge used for the construction of informative priors. Additionally, the

best method for the modelling of extreme rainfall over the country is decided

with the support of assessment measures. In general, the Bayesian paradigm

linked with the informative priors offers an adequate estimations scheme in

terms of accuracy as compared to frequentist methods, accounting for ambigu-

ity in parameters and return levels. Hence, these findings are very helpful in

adopting accurate flood protection measures and designing infrastructures

over the country.
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1 | INTRODUCTION

Pakistan is a country with exclusive rainfall patterns and
appearances than other countries in the world (Arif
et al., 2019). In particular, Pakistan faces two different
rainfall seasons namely summer and winter. In summer,
rainfall happens mainly during the monsoon season

(early July to September). Therefore, July and August are
considered the peak months for monsoon rainfalls. In
winter, mostly rainfall events occur from (mid-December
to March) (Ahmad et al., 2013). Unquestionably, extreme
rainfall events are frequently connected with climate
fluctuations, which may cause a series of natural disas-
ters such as flash floods, heavy winds, and landslides.
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Consequently, rapid fluctuations in the climate have fre-
quently increased the number of heavy floods in the
country.

During the 2020 monsoon rainfall spell, numerous
rain-related losses were reported in Pakistan. According
to Aljazeera News (2020), 31 casualties were reported in
the southern Sindh province, whereas 23 people expired
in Khyber Pakhtunkhwa province. Furthermore,
15 deaths were reported in southwestern Baluchistan
province and 8 in Punjab province. Likewise, 13 more
people passed away elsewhere in Pakistan's northern
areas, including three in Pakistan administered Kashmir.

According to the Federal Flood Commission (FFC)
report, floods have now become a regular feature in the
country. Due to downpours, the government has faced an
overall financial loss of more than US$ 38 billion during
the past 70 years. The massive defeat in the economy,
particularly in the agriculture sector, has dramatically
influenced the country's progress.

Rainfall patterns have continuously been examined
including the estimation of the rainfall distribution and
the identification of damp or dry events on a specific day.
However, information about the amount and happenings
of extreme rainfall is inevitable for different purposes
such as sustainable water resource management, govern-
ment planning for water-related disasters and prepara-
tion of different hydraulic structures (Ahmad et al., 2016;
Hussain et al., 2017). On the other side, it is unquestion-
able that the infrastructures and the region's economy
might be affected by extreme events. For these reasons,
statistical modelling and prediction of extreme environ-
mental events are required for future planning. More-
over, the challenging task in modelling extreme events is
to realize the happening probabilities linked with events
that are extrapolated beyond the observed data.

Procedures to analyse extreme values comprise the
frequency of happening of extreme events with the prac-
tice of probabilistic models for both similar or dissimilar
processes for one or more climate variables (Noto and La
Loggia, 2009; Lenderink and Fowler, 2017). Several
research studies exist in literature in favour of selection
and evaluation of different extreme value probabilistic
models for extreme data, but due to the accessibility of
the small length of observed data as compared to return
periods of interest, continuously this work has been chal-
lenging and provocative (Fadhilah et al., 2007; El Adlouni
and Ouarda, 2010; Olofintoye et al., 2009; Suhaila
et al., 2011; Rahman et al., 2013; Khudri and Sadia, 2013;
Marani and Ignaccolo, 2015; Ahmad et al., 2016; Ahmad
et al., 2019).

Extreme value analysis might be helpful to assess
both the probability of happening and the magnitude of
extreme events. So, extreme value theory authorizes
researchers to measure an event's random behaviour that

originates in the upper or lower tails. Standard extreme
value analysis is frequently performed based on the most
straightforward inferential procedure; however, the data
structure might be complex. Consequently, the statistical
modelling of extreme weather events using extreme value
theory agrees to accomplish the complex system that is
natural in the extreme data to enhance inferential
procedures.

For the modelling of extreme weather variables, the
two essential methods are engaged in extreme value the-
ory, namely block maxima and peak-over-threshold
(POT) (see, e.g., Coles, 2001; Rivas et al., 2008; Bücher
et al., 2019). In the block maxima method, we model a
maximum value of each year acquired from the large
sample via generalized extreme value (GEV) distribution
(Ferreira and De Haan, 2015). On the other side, the POT
method deals with those values that exceed the high
threshold level in the observed data with the application
of generalized Pareto distribution (Davison and
Smith, 1990; Ferreira and De Haan, 2015). However,
according to Madsen et al. (1997) and Eastoe and
Tawn (2012)), the block maxima is the favourite for
modelling extremes, whereas in the POT procedure,
sometimes selecting an appropriate threshold is not an
easy task.

From the advances in the statistical modelling point
of view, extreme value analyses customarily have been
carried out using frequentist approaches. For instance,
Hosking (1990) introduced the linear moments
(LM) method for the study of extreme data. Many studies
are available in the literature concerned with applying
the LM method (for instance, Elamir and Seheult, 2003;
Hosking and Wallis, 2005; Khan et al., 2021). Further-
more, Ahmad et al. (2013) and Ahmad et al. (2016) used
LM method to model the monsoon rainfalls patterns in
Pakistan. They establish the best fit distribution among
five extreme value distributions by classical modelling.
On the other side, Coles and Dixon (1999), Coles (2001),
and Ahmad et al. (2019) used likelihood-based inference
methods for modelling extreme value models.
Researchers are more interested in Bayesian modelling
than a classical setup to obtain more valuable results
about uncertainty extreme environmental events.

Meanwhile, extreme data are scarce by their nature.
The statistical inference on extremes could be enhanced
by the Bayesian paradigm's support that allows
supplementary evidence about the processes via prior
knowledge. For interested readers, many studies exist in
the literature (see, e.g., Coles and Tawn, 1996, 2005;
Coles and Powell, 1996; Beirlant et al., 2004; Chu and
Zhao, 2011; Naghettini, 2017, chap. 11; Diriba et al.,
2017; Ahmad et al., 2019; Diriba and Debusho, 2020).
However, the Bayesian analysis of extreme events is not
dependent on the critical assumptions that are obligatory
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for the frequentist framework by the asymptotic theory
(Smith, 1985; Coles, 2001; Smith, 2005). Generally, the
prior knowledge on extreme value model parameters is
rare to discover that fits the probabilistic models via
Bayesian procedure. Therefore, impressive results on this
strengthen us to increase the precision of the estimates.
For instance, Diriba et al. (2017) have been examined the
properties of priors on the parameter estimates of GEV
distribution and the prior effect on return levels for the
wind speed data of Cape Town, South Africa.

Furthermore, Ahmad et al. (2019)) have studied the
effects of priors on the parameters as well as return levels
for the rainfall data of Lahore station, Punjab, Pakistan.
Although, they did not generalize their results over the
country because their findings were limited only to one
province. They did not study any other frequentist proce-
dure except maximum likelihood estimation (MLE). These
studies inspire the authors to develop extreme rainfall
modelling over the country and explore an entire narrative
of uncertainty in parameters and return levels (RLs) of
GEV distribution. For this reason, some sites over the coun-
try are considered for experimental work. Consequently,
the essential purpose of this modelling is to predict extreme
rainfall events in the future over the country. The occur-
rence of uncertainty in the future forecasts of extremes
makes the study of extreme events even more vital and crit-
ical (Coles et al., 2003; Zhu et al., 2013; First, 2019). Thus, it
is mandatory to characterize their behaviour statistically.

In application point of view, the key objective of the
study for extreme environmental events is to recognize
the properties of the larger RLs of the variable of interest.
For instance, the estimates of RLs for an annual maxi-
mum of the extreme event could be predicted as these
observations provide an expected value of return level
that exceeds once, on average, in a given return period
(Coles, 2001; Diriba and Debusho, 2020). Hence, statisti-
cal findings from the systematic study of extreme climatic
events suggest high analytical power. Also, this research
study aims to examine extreme climate fluctuations and
varying patterns of events which may help to know the
behaviour of extreme weather events.

The rest of the paper is organized as follows. In Sec-
tion 2, the materials and methods are presented for data
analysis. The data description with their exploratory anal-
ysis and generalized extreme value model with block
maxima are explained. Also, both frequentist (MLE and
LM methods) and Bayesian Markov Chain Monte Carlo
(MCMC) paradigm with noninformative (NIPs) plus
Informative Priors (IPs) for parameters estimation and
RLs are established in the same section. Also, the assess-
ment measures are described in Section 2. In Section 3,
the results are discussed. For instance, how NIPs and IPs
affect parameter estimates of GEV and RLs in Bayesian
settings, the results of all three methods are compared

based on assessment measures. Conclusion and some rec-
ommendations are given in the final Section 4.

2 | MATERIALS AND METHODS

2.1 | Data description and exploratory
analysis

Throughout this paper, the data comprise a daily aggre-
gate of rainfall (in millimetres) of 11 weather stations all
over Pakistan recorded by automatic weather stations.
The data had been taken from Pakistan Metrological
Center Karachi corresponds to 32 years from 1985 to
2016. Data have been selected on the following standard
criteria: the length of the data, variability, quality, urban-
ization, and climate changes. Later, the ADMRS was
extracted from the daily rainfall data using the block
maxima method. AMDRS is a single maximum value for
any specific year and station among all recorded daily
rainfall values. The extracted data of 11 weather stations,
namely Lahore, Drosh, Chitral, Jacobabad, Khuzdar,
Rohri, Nawabshah, Lasbela, Hyderabad, Chhor, and
Pasni, were utilized for analysis and prediction. For
deriving of IPs, the rainfall characteristics of two new
weather stations at various distances were engaged,
namely Mohenjo-daro and Dera Ismael Khan (D.I.
Khan). The length of the data for these stations was
30 years from 1987 to 2016.

The D.I. Khan station is considered for the construc-
tion of IPs and it is located in the centre of the country.
Besides, the D.I. Khan district is situated between district
Bhakkar of south Punjab, Mianwali of North Punjab,
Zhob of Baluchistan, Indus river, and South Waziristan
of Pakistan tribal belt. The Mohenjo-daro station was
chosen for prior elicitation due to very short distances
from other various sites of the Sindh and Baluchistan
provinces. The plots under the Google map spatial link-
age encompass selected areas studied in the present
research are shown in Figure 1. Blue pinpoints highlight
the observed weather stations, and green pinpoints indi-
cate the stations used for IPs construction.

The descriptive analysis for the amount of ADMRS of
different stations selected all over the country is briefed
in Table 1. The mean of ADMRS fluctuates from 34.44 to
87.61 mm. The ADMRS of the Jacobabad station has
comparatively large variation, that is, the observations
are more spread (sample CV) than other data sets. One
observation (e.g., 323 mm) in the Jacobabad ADMRS is big
enough compared to others and may be a source for this
large CV. It can be observed that the Drosh station gained
less relative variation against other stations in the study.

Besides, most Sindh province stations have larger sam-
ple CVs compared to Punjab and Khyber Pakhtunkhwa
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(KPK). The ADMRS of two Baluchistan sites (i.e., Lasbela
and Khuzdar) and one station of KPK province as Chitral
are pretty more skewed compared to other data sets.

Moreover, it is necessary to test the fundamental
assumptions of any annual maximum series before con-
ducting a final analysis in the field of statistical hydrology

FIGURE 1 Spatial map plot of selected sites used in the study for the period of 1985–2016. Blue pinpoints are denoted the observed data

and green indicates those sites used for generating the informative priors [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Summary statistics of the AMDRS recorded from different stations

Study
locations

Summary statistics of selected weather stations

Minimum
(mm)

Maximum
(mm) Mean

Standard
deviation

Coefficient
of variation Skewness Kurtosis

Jacobabad 3.00 323 58.83 70.87 1.20 2.25 4.94

Rohri 5.00 173.7 46.75 40.58 0.87 1.49 1.97

Nawabshah 0.00 143 42.49 34.52 0.81 1.07 0.49

Hyderabad 4.00 153 48.35 33.63 0.69 0.878 0.77

Chhor 2.30 214.6 71.27 44.26 0.62 1.14 1.36

Mohenjo-daro 5.00 119.6 34.44 25.44 0.79 1.28 1.63

Khuzdar 15.00 223 43.33 34.55 0.80 4.34 19.87

Lasbela 8.00 269.6 48.22 46.55 0.96 3.49 13.41

Pasni 0.00 131.8 35.35 26.64 0.75 1.56 3.13

D.I. Khan 21.1 150 59.09 27.01 0.45 1.49 2.47

Drosh 22 131 51.95 21.21 0.41 2.10 5.15

Chitral 23.40 161.20 51.43 28.62 0.55 2.13 4.81

Lahore 29.40 189.70 87.61 38.71 0.44 0.89 0.17
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because the final results could be doubtful without satis-
fying the basic assumptions. The hydrological series fun-
damental assumptions are independence, homogeneity,
randomness, and stationarity (Naghettini, 2017, chap. 7).
Thus, we ensured that the data fulfilled the basic assump-
tions and can be used to model extreme rainfall. The
most suitable probability model for ADMRS is decided
among various models (generalized extreme value, Pear-
son type three, generalized Pareto, generalized logistic)
by using some nonparametric procedures. Hence, the
GEV distribution remains most suitable for the observed
ADMRS from various country sites. Moreover, the best-
fitted probability model and estimation of its parameters
via frequentist and Bayesian techniques are presented in
the subsequent section.

2.2 | Block maxima and generalized
extreme value distribution

To model the extreme observations using GEV, a data of
N independent values w1,w2,…,wN is first blocked into
k block of size n, with n essentially large, and hence
N=kn: For rainfall data, the block size is usually a
month, season or a year. For instance, 1 year stands for
n≈ 365 days. Then the maxima or extreme value
Mi, i=1,…,kð Þ is selected from each block. This produces
a data of k annual maxima series named block maxima
to which the GEV distribution family can be fitted. Sup-
pose the yearly maxima w1,w2,…,wn are independent and
identically distributed (i.i.d) with distribution function of
G wð Þ: Let Mn=max w1,w2,…,wnð Þ,n�Ν and if there are
sequences of normalizing constants cn>0f g and dn � ℜ

such that

pr
Mn−dnð Þ

cn
≤w

� �
!Gn cnw+dnð Þ!F wð Þ ð1Þ

as n!∞, where F is a nondegenerate distribution
function, the distribution function G is called to be in the
domain of attraction of extreme value distribution
F, {i.e., G�F wð Þ}. Besides, the F follows the family of the
probability distribution that has the form

F w,μ,σ,κð Þ=
exp − 1+κ w−μ

σ

� �� �−1
κ

h i
,κ≠ 0

exp −exp −
w−μ

σ

� 	h i
,κ=0

8><
>: ð2Þ

where w : 1+κ w−μð Þ=σf g, μ,σ>0, and κ are location,
scale, and shape parameters of GEV distribution
(Beirlant et al., 2004). The shape parameter affects the
behaviour of the upper tail of the distribution. Moreover,
GEV distribution is the mixture of three limiting extreme

value distributions, that is, Gumbel distribution, Freshet
distribution, and Weibull distribution. If κ! 0 the GEV
distribution in (2) relates to the Gumbel distribution. For
κ>0 and κ<0, the expression given in (2) called Frechet
and negative Weibull distributions, respectively
(Coles, 2001).

2.3 | Parameter estimation of GEV
distribution

Primarily, the maximum likelihood estimation method
and linear moments method were applied to estimate
GEV distribution parameters. In MLE, we differentiate
the function given in (2) for wi, for instance, when κ≠ 0
the density of GEV is given by

f wi,κ,μ,σð Þ= 1
σ

1+κ
wi−μð Þ
σ


 �− 1+ 1
κð Þ
exp − 1+κ

wi−μð Þ
σ

� �− 1
κ

" #

ð3Þ

The maximum likelihood estimates (MLEs) of the
parameters μ,σ, and κ, say μ̂, σ̂, and κ̂ are calculated by
maximizing the logarithm of the joint likelihood, that is,
maximizing

l μ,σ,κ;w1,w2,::,wnð Þ=−nlog σ− 1+
1
κ

� 
Xn
i=1

log

1+κ
wi−μð Þ
σ


 �
−
Xn
i=1

1+κ
wi−μð Þ
σ

� �−1
κ

ð4Þ

concerning unknown parameters, say μ,σ, and κ. Since
the solution of log-likelihood is not an easy task, in par-
ticular, the maximization is solved by quasi-Newton pro-
cedure with numerical iteration (Diriba et al., 2017;
Diriba and Debusho, 2020).

In LM method computations, we use the linear com-
binations of order statistics values. This method was
introduced by Hosking (1990). The LM provides simple
and more efficient estimators of extremal data character-
istics and the parameters of the distribution. Let
W1,W 2,…,Wr be the random sample of magnitude n,
with cumulative distribution function F wð Þ and quantile
function w Fð Þ. Suppose W 1:r≤W 2:r≤…≤Wr:r be the order
statistics of the selected random samples. For the random
variable W, the rth population LM as explained by
Ahmad et al. (2016):

λr=
1
r

Xr−1

i=0

−1ð Þk r−1

i

� 

E Xr− i:rð Þ, r=1,2,… ð5Þ
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Usually, we require the first four LM for r=1,2,3,4:
Additionally, LM can also be considered as the linear
combinations of probability-weighted moments as given:

λr+1=
Xr

i=0

βi −1ð Þr− i r

i

� 

r−1

i

� 

ð6Þ

The first four LM are

λ1=μ+
σ

κ
1−Γ 1+κð Þf g, ð7Þ

λ2=
σ

κ
1−2−κð ÞΓ 1+κð Þf g, ð8Þ

τ3=
2 1−3−κð Þ
1−2−κð Þ −3, ð9Þ

τ4=
5 1−4−κð Þ−10 1−3−κð Þ+6 1−2−κð Þf g

1−2−κð Þ ð10Þ

The LM ratios τ=λ2=λ1, τ3, and τ4 denote the linear coef-
ficient of variation, linear skewness, and linear kurtosis,
respectively. The GEV parameters were estimated by
using some approximations discussed by Hosking and
Wallis (2005, p. 196). Moreover, the theoretical estimates
of the parameters of GEV are given as follows

μ̂=λ1+
σ̂ Γ 1+ κ̂ð Þ−1½ �

κ̂
ð11Þ

σ̂=
λ2κ̂

1−2− κ̂
� �

Γ 1+ κ̂ð Þ ð12Þ

κ̂=7:8590ĉ+2:95554ĉ2 ð13Þ

where

ĉ=
2

3+τ3
−
log2
log3

ð14Þ

2.4 | Return level estimation for
GEV model

The attention to extreme environmental events analysis
sometimes does not generally rely on the estimates of
extreme value distribution parameters; however, it
applies the fitted model to calculate the other quantities.
Return level estimates play a dynamic role in rainfall
modelling for calculating the future hazard associated

with return periods conforming to a fitted model. For
instance, the estimates of extreme quantiles for ADMRS
of an event could be calculated because these observa-
tions assess the return level of the event predicted on
averagely exceeds once in a specific number of years.

The RLs for the GEV model corresponding to the
return period T=1=p, denoted by wp where F wp=1−p

� �
and 0<p<1, is attained by using quantile function by the
inverse of (2) given by (Coles, 2001) and also discussed by
Ahmad et al. (2019) & Diriba and Debusho (2020).

wp=
μ−

σ

κ
1− − log 1−pð Þf g−κ½ �,

μ−σlog − log 1−pð Þf g,

(
κ≠ 0,κ=0 ð15Þ

The return level wp is determined by quantiles of
GEV distribution associated with the upper tail probabil-
ity p: For the GEV model, the MLEs of the return level
wp, indicated by ŵp is gained by substituting the MLEs
μ̂, σ̂, and κ̂ (Rao, 1973).

2.5 | Bayesian analysis

As in the maximum likelihood procedure, suppose
ADMRS w= w1,w2,…,wnð Þ are i.i.d and their distribution
falls within the parametric GEV family. Moreover, now
in the Bayesian setting, the GEV distribution parameters
(μ,σ, and κ) are dealt as random variables for which we
identify the prior distributions. The prior information
helps us enhance the knowledge provided by the
observed data. Let θ= μ,σ,κð Þ and suppose the prior for θ
with no evidence to the actual data can be expressed by a
probability density function gθ θð Þ. Then using Bayes the-
orem to combine the likelihood and prior knowledge and
to get the posterior density for θ has the following form:

f θ=wð Þ= L θ=wð Þgθ θð ÞÐ
ΘL θ=wð Þgθ θð Þdθ/ L θ=wð Þgθ θð Þ ð16Þ

Where L θ=wð Þ indicates the likelihood function of
GEV distribution given in (4) and f θ=wð Þ is the posterior
distribution for θ, and the integral is set over the para-
metric space Θ. In this research, both the NIPs and IPs
were engaged. The NIPs were specified by considering
there is least or no external information accessible about
the parameters, separate from the data. To generate the
NIPs for the GEV parameter designated θ= μ,σ,κð Þ, the
parametrization φ= logσ is done in the place of σ due to
more manageable tasks in the specification of prior and
to secure the positivity of scale parameter σ. Since for
priors specification, the joint density for θ was supposed
in the following form
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g θð Þ=g μ,φ= logσ,κð Þ=gμ μð Þgφ φð Þgκ κð Þ ð17Þ

The following marginal independent NIPs in different
studies (Coles and Tawn, 2005; Fawcett and
Walshaw, 2008; Eli et al., 2012; Diriba et al., 2017; Ahmad
et al., 2019; Diriba and Debusho, 2020) were used.

gμ μð Þ�N 0,10,000ð Þ,gφ φð Þ�N 0,10,000ð Þ,gκ κð Þ
�N 0,100ð Þ ð18Þ

These are known as independent Gaussian priors
with mean 0 and large variances (e.g., N 0,10,000ð Þ indi-
cates Gaussian distribution with 0 mean and 10,000 vari-
ances). The higher variances of the distribution enforce
enough to create flat marginal priors, which confirm the
lack of external information. On the other hand, the IPs
were built by using the procedure given by (Coles and
Tawn, 1996), that is, prior knowledge was provoked in
terms of extreme quantiles. The method engaged for GEV
is briefly described in the following paragraph.

Remember that the return level wpi , i=1,2,3 in expres-
sion (15) with p1>p2>p3, be the quantiles calculated
corresponding to T return period from historical extreme
rainfall data of two suitable sites over the country. For
example, the quantiles wpi are estimated independently
for both Mohenjo-daro and D.I. Khan stations by
replacing MLEs of GEV parameters in Equation (2).
Coles and Tawn (1996) discuss a joint prior distribution
for GEV parameters generated from extreme quantile
(wp1 ,wp2 ,wp3 ) by employing given probabilities p1>p2>p3.
One minor complication with these techniques is that the
quantiles wpi , i=1,2,3 must be in natural order
(e.g., wp1<wp2<wp3 ); hence, the fundamental assumption
of independent priors wpi , i=1,2,3 would not be fulfilled.
Subsequently, they recommended to use the quantile
differences:

~wpi =wpi −wpi−1
, i=1,2,3 ð19Þ

where wp0 denotes a physically lower endpoint of the pro-
cess variable (e.g., rainfall) and supposed to be wp0 =0. It
can be noticed that the change in quantile endorses the
ordering of quantiles. Since independent marginal priors
based on the quantile differences are now supposed to be
independent gamma distribution with parameters (νi,γi),
i=1,2,3, and can be written in the following form:

~wpi �G νi,γið Þ νi>0, γi>0; i=1,2,3: ð20Þ

From Equations (19) and (20), we can develop the
joint prior for the (νi,γi), i=1,2,3, from the Gamma dis-
tribution in the following form

~wp1 �G ν1,γ1ð Þ/wν1−1
p1

exp −γ1wp1

� �
,

~wp2 �G ν2,γ2ð Þ/ wp2 −wp1

� �ν2−1
exp −γ2 wp2 −wp1

� �� �
,

and

~wp3 �G ν3,γ3ð Þ/ wp3 −wp2

� �ν3−1
exp −γ3 wp3 −wp2

� �� �
:

Then the joint prior for (wp1 ,wp2 ,wp3 ), by considering
wp0 =0, is stated as

g wp1 ,wp2 ,wp1

� �/wν1−1
p1

exp −γ1wp1

� �
× wp2 −wp1

� �ν2−1

exp −γ2 wp2 −wp1

� �� �
× wp3 −wp2

� �
exp −γ3 wp3 −wp2

� �� �
and has written in a short form

g wp1 ,wp2 ,wp1

� �/ ~wν1−1
p1

exp −γ1~wp1

� �
×
Y3
i=2

~wνi−1
pi

exp −γi~wpi

� �
ð21Þ

with wp1<wp2<wp3 discussed by Diriba et al. (2017),
Ahmad et al. (2019), and Diriba and Debusho (2020).
Then incorporating expression (15) in Equation (21) and
multiply by the Jacobian of the transformation from
wp1 ,wp2 ,wp3

� �! θ= μ,σ,κð Þ, it provides an expression for
the prior in terms of the GEV parameter vector θ. More-
over, it has the following form

gθ θð Þ/
Y3
i=1

~wνi−1
pi

exp −γi~wpi

� �
×J ð22Þ

for wp1<wp2<wp3 . According to Diriba and Debusho
(2020), the Jacobean used in (22) is found in such a way

J=

∂wp1

∂μ

∂wp1

∂σ

∂wp1

∂κ
∂wp2

∂μ

∂wp2

∂σ

∂wp2

∂κ
∂wp3

∂μ

∂wp3

∂σ

∂wp3

∂κ

�������������

�������������

and their results expressed in Equation (23) as follows:

J=

σ

κ2

X
i<j

−1ð Þi+ j zi×zj
� �

log
zj
zi

� 
����
����, i, j∈ 1,2,3ð Þ;κ≠ 0

σ

2

X
i<j

−1ð Þi+ jlog zi× log zjlog
zj
zi

� 
����
����, i, j∈ 1,2,3ð Þ;κ=0

8>>><
>>>:

ð23Þ

where zi = −log(1−pi), i = 1, 2, 3.
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2.6 | Assessment measures

Assessment measures were used to compare the perfor-
mance between the classical or frequentist (i.e., MLE and
LM approaches) and the Bayesian MCMC paradigm with
NIPs and IPs in estimating GEV parameters and RLs for
ADMRS recorded from different weather stations over
the country. Moreover, these measures could distinguish
the accuracy among results obtained through classical
and Bayesian procedures. So, the proposed assessment
measures are relative root mean square error (RRMSE),
relative absolute error (RAE). Both measures encompass
evaluating the difference between the observed and the
estimated values corresponding to the assumed

distribution (Ahmad et al., 2019). The mathematical form
of the tests are given in (24) and (25)

RRMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
j=1

wj:n− q̂ Fj
� �

wj:n

����
����


 �2vuut ð24Þ

RAS=
1
n

Xn
j=1

wj:n− q̂ Fj
� �

wj:n

����
���� ð25Þ

where wj:n means the observed sample values of jth order
statistics of a random sample, while q̂ Fj

� �
are estimated

quantiles parallel to jth Weibull plotting position

TABLE 2 Estimated parameters with their SE through MLE and LM methods for the GEV model based on ADMRS from different

stations over the country

Study locations

MLEs L-moments estimates

μ̂ SEð Þ σ̂ SEð Þ κ̂ SEð Þ μ̂ SEð Þ σ̂ SEð Þ κ̂ SEð Þ
Rohri 26.15 (4.73) 22.14 (4.02) 0.30 (0.20) 26.63 (4.72) 23.84 (4.08) 0.21 (0.21)

Nawabshah 25.26 (4.51) 21.95 (3.60) 0.18 (0.16) 24.91 (4.40) 22.61 (3.64) 0.16 (0.15)

Hyderabad 32.45 (5.29) 25.05 (4.09) 0.05 (0.18) 33.06 (5.27) 27.65 (4.09) –0.03 (0.11)

Chhor 51.04 (6.28) 31.66 (4.64) 0.05 (0.13) 49.85 (6.29) 31.36 (4.60) 0.10 (0.12)

Khuzdar 32.14 (2.24) 11.62 (1.74) 0.21 (0.10) 31.15 (2.35) 9.735 (1.77) 0.41 (0.10)

Lasbela 30.89 (3.44) 17.61 (2.76) 0.25 (0.12) 29.50 (3.45) 14.64 (2.78) 0.42 (0.11)

Pasni 22.85 (3.38) 16.77 (2.62) 0.15 (0.15) 22.51 (3.44) 17.21 (2.58) 0.14 (0.14)

Jacobabad 23.58 (4.81) 22.47 (4.97) 0.63 (0.23) 25.17 (4.79) 25.54 (4.88) 0.43 (0.11)

Drosh 43.04 (2.51) 13.01 (1.83) 0.09 (0.10) 42.40 (2.48) 11.80 (1.92) 0.19 (0.12)

Chitral 37.99 (2.40) 12.08 (2.12) 0.37 (0.15) 37.57 (2.38) 11.78 (2.01) 0.38 (0.14)

Lahore 69.30 (5.67) 27.88 (4.29) 0.07 (0.16) 68.84 (5.64) 28.82 (4.21) 0.07 (0.15)

TABLE 3 Estimated return levels for ADMRS of different weather stations over the country by using MLE and L-moments methods

Study locations

MLE method L-moment method

10 25 50 100 500 10 25 50 100 500

Rohri 97.40 145.22 190.62 246.27 429.89 95.56 136.13 172.02 213.41 336.37

Nawabshah 86.71 121.42 151.46 185.46 283.28 86.31 119.68 147.97 179.42 267.26

Hyderabad 92.39 119.90 141.24 163.24 217.34 93.57 118.07 135.88 153.23 192.21

Chhor 127.18 162.23 189.55 217.78 287.51 128.73 167.47 198.613 231.69 317.27

Khuzdar 65.82 85.69 103.29 123.62 184.13 67.15 95.53 124.99 163.96 310.77

Lasbela 84.28 117.64 148.06 184.14 296.44 84.35 128.25 174.17 235.35 468.66

Pasni 67.78 91.75 111.87 134.07 195.20 68.43 92.81 113.23 135.69 197.33

Jacobabad 136.43 259.55 413.21 651.77 1846.23 122.63 202.22 286.44 399.75 839.37

Drosh 75.67 91.63 104.43 117.10 152.99 75.627 94.536 110.96 129.62 183.62

Chitral 80.64 112.48 144.57 185.96 335.03 79.605 111.42 143.69 185.56 337.96

Lahore 137.57 169.91 195.40 222.05 289.15 139.08 172.16 198.16 225.26 293.18

AHMAD ET AL. 215

 10970088, 2022, 1, D
ow

nloaded from
 https://rm

ets.onlinelibrary.w
iley.com

/doi/10.1002/joc.7240 by C
ochraneItalia, W

iley O
nline L

ibrary on [31/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



F= j= n+1ð Þ, where j shows the ranks of the data. The
method that gained the lowest RRMSE and RAS would
be considered an efficient method for modelling
Pakistan's extreme rainfall data.

3 | RESULTS AND DISCUSSION

3.1 | Generalized extreme value
distribution using frequentist methods

In this section, the GEV model of Equation (2) with a
block maxima was fitted to ADMRS using MLE and LM
methods. Moreover, the parameter estimates (μ̂, σ̂, and κ̂)
with their standard errors (SE) of the GEV stationary
model are given in Table 2.It can be noted from Table 2
that the shape parameter κ̂ obtained through the LM
method is less than zero for the Hyderabad station. This
specifies a bounded upper tail to the distribution of
ADMRS. The negative shape parameter suggests a
heavier tail for GEV distribution, which offers smaller
quantiles, particularly when the quantiles for ADMRS
are estimated for longer return periods (Hosking, 1990).

The estimated RLs for different return periods are
presented in Table 3, for both MLE and LM procedures.
As a result, the RL estimates are smaller and consistent
for the LM method, while RLs are larger for the MLE
method. Moreover, the variations in RLs could be due to
the skewness in the ADMRS. Consequently, to distin-
guish the summary of a series for skewed distributions,
the median is more energetic to deal with outliers than
the mean. The variation between the median and the
mean can signify the magnitude of unusual values in the

RLs (Diriba and Debusho, 2020). Hence, this task is fur-
ther examined with the Bayesian paradigm application.

3.2 | Bayesian modelling of ADMRS
using noninformative and informative
priors

This section deals with inferences about ADMRS
obtained through Bayesian analysis by NIPs and IPs sup-
port. The IPs were constructed independently for
Mohenjo-daro and D.I. Khan. Therefore, two sites were
used to elicit prior distributions. Both sites were lying at
different distances from the observed sites. The distance's
influence on the parameters and the RLs were evaluated
in general.

The NIPs were built for the GEV parameters
θ= μ,σ,κð Þ by assuming there is no reliable prior informa-
tion about the process to express the prior distributions
apart from the data. Thus, the priors joint density for θ
given in expression (17) was assumed with the parametri-
zation φ= logσ. Hence, the noninformative independent
priors given in (18) were incorporated. The scale parame-
ter of GEV (i.e., σ) was reparametrized as φ= logσ to hold
the positive property of variance. The Gaussian distribu-
tions having zero mean and higher variances in expres-
sion (18) enforce the flat independent marginal priors
(also known as diffuse or vague priors), which exhibit the
lack of external information (Eli et al., 2012; Ahmad
et al., 2019).

The MCMC procedure with the Metropolis-Hasting
(M-H) recipe was used for generating the samples from
posterior distributions. By applying H-M, 50,000

TABLE 4 Posterior means, standard deviations and confidence intervals for GEV parameters to ADMRS data of different weather

stations via noninformative priors

Study locations

Parameters estimates of GEV distribution

μ̂ SEð Þ [CI] σ̂ SEð Þ [CI] κ̂ SEð Þ [CI]
Rohri 26.07 (4.97) [17.13, 36.44] 23.80 (4.68) [15.97, 34.23] 0.35 (0.22) [0.01, 0.87]

Nawabshah 25.21 (4.83) [16.43, 35.29] 23.77 (4.19) [16.84, 33.50] 0.22 (0.18) [−0.09, 0.61]

Hyderabad 31.96 (5.42) [21.52, 42.95] 26.56 (4.51) [18.85, 36.27] 0.13 (0.19) [−0.17, 0.57]

Chhor 50.61 (6.65) [37.99, 64.14] 34.15 (5.51) [25.20, 46.74] 0.08 (0.13) [−0.15, 0.37]

Khuzdar 32.12 (2.45) [27.46, 37.11] 12.56 (2.08) [9.17, 17.33] 0.25 (0.11) [0.07, 0.51]

Lasbela 30.94 (3.71) [24.04, 38.67] 19.04 (3.30) [13.63, 26.51] 0.29 (0.13) [0.08, 0.60]

Pasni 22.95 (3.56) [16.17, 30.26] 18.19 (2.98) [13.24, 24.95] 0.18 (0.15) [−0.07, 0.51]

Jacobabad 24.23 (5.11) [15.43, 35.35] 24.92 (5.93) [15.57, 39.04] 0.66 (0.23) [0.27, 1.18]

Drosh 42.78 (2.69) [37.88, 48.36] 14.046 (2.160) [10.444, 18.92] 0.12 (0.12) [−0.05, 0.37]

Chitral 38.18 (2.58) [33.47, 43.60] 13.251 (2.53) [9.158, 19.17] 0.39 (0.16) [0.12, 0.74]

Lahore 69.18 (5.99) [57.54, 81.57] 30.205 (4.91) [21.846, 41.18] 0.09 (0.16) [−0.17, 0.42]
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iterations were produced for all sites, of which the initial
10,000 were burn-in. For simulation, different starting
points were considered to perceive the chain conver-
gence. Hence, all the chains had mixed well with the
original data. The posterior means (PMs), standard devia-
tions (SDs), and 95% CIs via NIPs for the GEV parame-
ters for different sites are given in Table 4. Hence, it can
be observed that the PMs and SDs are close to MLEs and
LM estimates of GEV parameters except for the shape
parameter estimates for various sites obtained through
L-moments (see Table 2). It is anticipated that for vague
priors PMs would be close to L-moments and MLEs as
they incorporate slight evidence to the likelihood.

On the other hand, the historical data of rainfall of two
weather stations, namely Mohenjo-daro and D.I. Khan
were used to formulate the IPs. Using the procedure given
in Section 2.5, the prior distributions for the GEV model
were built with the support of quantiles pi=10− i, i=1,2,3.
From the historical data of Mohenjo-daro station, we
found ~wp1 �G 8:760,8:071ð Þ, ~wp2 �G 0:423,273:255ð Þ,
and ~wp3 �G 0:076,3400:395ð Þ. Similarly, from D.I. Khan
station historical data, authors have also
attained ~wp1 �G 39:612,2:457ð Þ, ~wp2 �G 1:301,50:941ð Þ,

and ~wp3 �G 0:294,282:395ð Þ. The PMs with their SDs and
95% CIs of GEV parameters from IPs are also given in
Table 5. The findings show that PMs for the GEV model
parameters from the settings of informative priors are
very close to the results gained from the NIPs. Also, the
IPs built from Mohenjo-daro and D.I. Khan stations
abridged the posterior SDs of GEV parameters for various
sites than the SDs obtained via NIPs and frequentist
methods. The smaller SDs indicate a reduction in uncer-
tainty. This is happened due to the use of historical infor-
mation from two nearby weather stations over the
country.

To understand how GEV parameters were affected by
the IPs based on the historical data of two different
weather stations. The posterior densities (PDs) of the
parameters found through NIPs and IPs were compared.
The estimated densities of GEV parameters (μ,σ, and κ)
for three sites, namely Hyderabad, Khuzdar, and Chitral
are plotted in Figure 2. The posterior densities of the
parameters of the model for remaining are given in
Figure S1 (see, e.g., supporting information file). Notice
that the distributions of location parameters are symmet-
ric for all three sites.

TABLE 5 Posterior means, standard deviations, and confidence intervals for GEV parameters to ADMRS data of different weather

stations via informative priors

Study
locations

Mohenjo-daro D.I. Khan

μ̂ SEð Þ[CI] σ̂ SEð Þ[CI] κ̂ SEð Þ[CI] μ̂ SEð Þ[CI] σ̂ SEð Þ[CI] κ̂ SEð Þ[CI]
Rohri 24.92 (4.59)

[16.58, 34.53]
21.75 (3.89)
[15.15, 30.19]

0.25 (0.14)
[−0.01, 0.54]

27.40 (4.37)
[19.33, 36.47]

23.94 (3.73)
[17.69, 32.04]

0.17 (0.108)
[−0.03, 0.38]

Nawabshah 24.40 (4.49)
[15.86, 33.88]

22.34 (3.37)
[16.09, 30.59]

0.16 (0.14)
[−0.09, 0.45]

26.52 (4.38)
[18.27, 35.49]

24.36 (3.70)
[18.29, 32.70]

0.12 (0.12)
[−0.11, 0.34]

Hyderabad 30.83 (5.18)
[21.12, 41.45]

25.08 (4.07)
[17.81, 34.11]

0.07 (0.14)
[−0.17, 0.37]

32.32 (5.02)
[22.91, 42.28]

26.41 (4.01)
[19.56, 35.30]

0.04 (0.12)
[−0.18, 0.29]

Chhor 47.92 (6.22)
[36.15, 60.40]

30.86 (4.54)
[23.54, 40.98]

0.04 (0.10)
[−0.14, 0.25]

47.54 (5.81)
[36.18, 59.15]

30.02 (4.06)
[23.26, 39.11]

0.022 (0.08)
[−0.14, 0.19]

Khuzdar 31.97 (2.12)
[27.48, 36.82]

12.35 (1.65)
[9.29, 16.58]

0.24 (0.09)
[0.07, 0.45]

33.38 (2.12)
[28.73, 38.20]

13.87 (1.66)
[10.58, 18.09]

0.26 (0.09)
[0.09, 0.44]

Lasbela 30.07 (3.45)
[23.60, 37.13]

17.73 (2.64)
[13.29, 23.61]

0.25 (0.10)
[0.07, 0.46]

31.70 (3.45)
[25.08, 38.67]

19.03 (2.57)
[14.56, 24.64]

0.23 (0.08)
[0.07, 0.40]

Pasni 22.54 (3.47)
[15.98, 29.62]

17.67 (2.73)
[13.12, 23.91]

0.16 (0.12)
[−0.06, 0.43]

24.73 (3.55)
[18.15, 32.03]

19.91 (2.88)
[15.11, 26.42]

0.17 (0.11)
[−0.06, 0.39]

Jacobabad 22.15 (4.26)
[14.69, 31.20]

20.37 (3.93)
[13.63, 29.13]

0.43 (0.12)
[0.18, 0.68]

24.91 (4.16)
[17.12, 33.55]

22.79 (3.72)
[11.39, 19.32]

0.29 (0.09)
[0.12, 0.47]

Drosh 42.66 (2.67)
[37.51, 47.96]

12.45 (2.13)
[8.90, 17.22]

0.34 (0.12)
[0.11, 0.59]

39.11 (2.48)
[34.47, 44.26]

13.68 (2.18)
[9.98, 18.53]

0.31 (0.10)
[0.09, 0.50]

Chitral 37.82 (2.46)
[33.30, 42.95]

12.45 (2.13)
[8.90, 17.22]

0.34 (0.12)
[0.11, 0.59]

39.12 (2.48)
[34.47, 44.26]

13.68 (2.18)
[9.98, 18.53]

0.30 (0.10)
[0.09, 0.50]

Lahore 66.87 (5.65)
[56.04, 78.54]

27.22 (4.27)
[20.11, 37.02]

0.05 (0.12)
[−0.17, 0.29]

65.82 (5.22)
[55.86, 76.33]

26.10 (3.84)
[19.74, 34.81]

0.03 (0.10)
[−0.16, 0.23]
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On the other hand, the distributions of scale and
shape parameters are positively skewed. Furthermore,
the location, scale, and shape parameters for IPs are built
using the information from Mohenjo-daro and D.I. Khan
showing high peaks. The fluctuations in posterior densi-
ties indicate that the posterior distributions are sensitive
to the IPs from which the prior knowledge was produced.

As we discussed earlier, IPs were based on the knowledge
that considered the functions of two stations over the
country with the combination of mean and quantiles of
the data. Weather conditions of those regions from which
the data acquired are assumed to be relatively homoge-
neous. For instance, the Lahore station was selected by
pretending that the environmental conditions of other
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FIGURE 2 Posterior densities of GEV distribution parameters for Hyderabad, Khuzdar and Chitral weather stations via noninformative

and informative priors [Colour figure can be viewed at wileyonlinelibrary.com]
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cities of the province Punjab similar to Lahore. According
to our evaluation, the estimates of GEV parameters based
on IPs are susceptible. Therefore, selecting appropriate
weather stations for the formulations of IPs is also an
important task. The validation and robustness of esti-
mates are verified by observing the effect of other IPs on
the model parameters. For this purpose, the IPs were
elicited by exploiting the Jaisalmer station historical
records of the neighbouring country India. Figure S3
(see, e.g., supporting information file) shows that the
influence of IPs on parameters of the models for Rohri
data was similar to IPs generated from Mohenjo-daro and
D.I. Khan historical records. Based on this evidence, our
current methodology could be extended easily to other
ungagged sites of the country. Moreover, the same discus-
sion can be followed to interpret the remaining stations
namely Rohri, Nawabshah, Chhor, Lasbela, Pasni,
Jacobabad, Drosh, and Lahore.

Generally, the above-discussed sites are very important
from a geographical point of view over the country. A spa-
tial map of the country and three sites (namely Hydera-
bad, Khuzdar, and Chitral) with their neighbouring areas
in concern division are presented in Figure 3. In addition,
Figure 3b covered the area of the Hyderabad division of
the Sindh province and the red area indicates the Hydera-
bad city which was quite affected during the latest mon-
soon seasons. The left bottom map described the Kalat

division of the Balouchistan province. The red colour indi-
cates the Khuzdar district of the Kalat division. This divi-
sion also received a lot of damages during monsoon
seasons. Figure 3d presented the Malakand division of
KPK province, and the red colour indicates the Chitral dis-
trict. During the 2020 monsoon, the Malakand division got
extreme rain events and faced land sliding problems, and
flashed floods. Furthermore, the daily life of the people in
these areas of the country is mostly affected by heavy rain-
falls during every monsoon. The modelling presented in
this paper could be very helpful in policymaking and the
country's development.

3.3 | Influence of priors on return levels

To inspect the influence of the NIPs and IPs on RLs, the
posterior density plots for (0<p<1) were constructed by
considering the vector of observations. Consequently,
these are obtained from the marginal posterior distribu-
tions of GEV parameters. For instance, the posterior den-
sities for 10, 25, 50, 100, and 500 years were obtained
against the different posterior distributions. The RLs are
also sensitive in the context of the choice of values p (e.g.,
p=0:1,0:04,0:02,0:01, and 0:005).

The posterior densities plots of site Khuzdar for 10-,
25-, 50-, 100-, and 500 years RLs based on NIPs and IPs are

FIGURE 3 (a) The Pakistan

spatial map with the elevation above

the sea level (m), (b) the Hyderabad

division of the province Sindh, the

red colour indicates Hyderabad

district, which is most affected due to

heavy rains, (c) the Kalat division of

the province Baluchistan, the red

colour represents the affected site

namely Khuzadar, and (d) described

the Malakand division of the

province Khyber Pakhtunkhwa, the

red colour indicates the affected area

Chitral with substation Darosh

[Colour figure can be viewed at

wileyonlinelibrary.com]
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presented in Figure 4. Also, the posterior densities plots for
the RLs of the remaining sites namely Rohri, Nawabshah,
Hyderabad, Chhor, Lasbela, Pasni, Jacobabad, Drosh, Chi-
tral, and Lahore are presented in Figure S2 (see for exam-
ple, supporting information file). From the plots given in
Figure 4, it can be realized that the IPs also affected the RLs
distribution. Furthermore, the PDs of IPs have appeared
with high peaks as compared with PDs of NIPs. Also, to
some extent, the distributions of all RLs are skewed to the
right side. On the other hand, the posterior densities for
higher RLs of stations (i.e., Rohri, Hyderabad, and
Jacobabad) are not interpretable for the case of NIPs. So far,
when comparing MLE with the LM method in a frequentist
framework, we acquired different mean RLs, which could
be due to the heavy tail of the GEV distribution or skewness
detected in the data. The mean RLs obtained for
Jacobaabad weather station through MLE are very high as

compared to the LM method. Thus, the RLs estimates could
be improved for all sites by choosing suitable summary
measures for the inference. Generally, the posterior
medians could be used in place of means in the Bayesian
setting. Additionally, the skewed densities of return levels
indicate the uncertainty inside the model for developing
reasonable upper bounds of the return levels as compared
to lower limits for higher return periods (Coles and
Tawn, 2005) and (Ahmad et al., 2019). Therefore, posterior
medians were obtained as the best choice than the posterior
mean for 10, 25, 50, 100, and 500 years RLs of ADMRS
using NIPs and IPs. The RLs via NIPs are provided in
Table 6 while the RLs based on the IPs are given in Table 7.

The posterior medians of RLs obtained via IPs are
close to RLs based on MLEs except for the Jacobabad
weather station. From the results of Table 7, it can be
seen that the posterior RLs are quite reasonable also for
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Jacobabad station. On the other hand, RLs calculated
through L-moments are smaller as compared to other
methods. This might be happened due to the negativity
of the shape parameter. The best estimation method for
future modelling could be decided by assessment mea-
sures. For this purpose, we used two assessment mea-
sures. A useful discussion for those procedures was given
in the next section.

3.4 | Model selection through
assessment measures

The methods used for the analysis and/or for the model-
ling of extreme rainfall data were compared in this sec-
tion. The comparison task was carried out by using the

assessment measures namely RRMSE and RAE given in
Equations (24) and (25), respectively. Also, Table 8 was
created by using the “Fgmutils” R package.

From the findings of Table 8, it can be observed the
Bayesian MCMC approach have smaller values for both
RRMSE and RAS when compared with those of the
frequentist methods. Besides, the Bayesian paradigm
with the support of IPs also had smaller values for
RRMSE and RAS than Bayesian analysis based on non-
informative priors. Furthermore, the results of RRMSE
and RAS for the Bayesian MCMC method linked with
the IPs generated from the data of D.I. Khan station were
smaller than the Bayesian MCMC method based on IPs
built from the data of Mohenjo-daro station. Honestly
speaking, overall results based on the Bayesian method
when compared with classical approaches discovered the

TABLE 6 Estimated return levels

corresponding to different return

periods of ADMRS for 11 weather

stations across the country by using

noninformative priors

Study locations

Noninformative prior

10 25 50 100 500

Rohri 107.87 167.21 226.00 300.74 563.38

Nawabshah 94.00 134.53 170.40 211.77 334.81

Hyderabad 101.06 136.44 165.57 197.14 281.54

Chhor 135.08 175.63 207.83 241.70 327.83

Khuzdar 70.23 94.03 115.76 141.53 221.74

Lasbela 91.48 131.50 169.26 215.09 364.60

Pasni 73.35 101.47 125.65 152.85 230.37

Jacobabad 145.86 278.57 443.95 700.33 1980.87

Drosh 79.38 98.00 113.289 129.823 173.91

Chitral 86.08 122.90 160.57 209.80 391.32

Lahore 144.79 181.67 211.21 242.50 323.07

TABLE 7 Estimated return levels corresponding to different return periods of ADMRS for 11 weather stations over the country by using

Bayesian paradigm under informative priors

Study locations

Informative prior (Mohenjo-daro) Informative prior (D.I. Khan)

10 25 50 100 500 10 25 50 100 500

Rohri 90.43 131.03 167.93 211.51 346.32 93.19 129.49 160.52 195.26 293.44

Nawabshah 85.17 118.27 146.36 77.64 265.14 89.78 122.19 148.82 177.66 254.69

Hyderabad 92.26 121.37 144.33 168.34 228.82 94.90 123.25 145.08 167.45 221.93

Chhor 120.89 153.82 179.15 205.06 268.02 116.87 147.16 170.06 193.15 247.93

Khuzdar 68.97 91.74 112.37 136.65 211.36 76.12 103.32 128.41 158.41 253.22

Lasbela 83.70 117.08 147.51 183.52 295.32 87.64 121.26 151.33 186.34 292.06

Pasni 70.71 97.01 119.36 144.27 214.09 79.55 109.88 135.82 164.91 247.24

Jacobabad 99.73 162.94 229.76 319.56 667.32 97.78 146.31 192.21 248.25 431.93

Drosh 77.88 95.75 110.35 126.09 167.82 82.90 103.57 120.80 139.68 191.19

Chitral 79.97 110.00 139.47 176.60 305.18 83.44 113.43 142.02 177.20 293.94

Lahore 131.76 161.39 184.32 207.89 265.67 126.54 153.35 173.73 194.37 243.72
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reputation of Bayesian inference for the extreme rainfall
data. This approach deals with the uncertainties linked
with excesses of weather variables efficiently. Essentially,
the IPs for the Bayesian method constructed from sur-
rounding weather stations increase the accuracy of the
parameter estimates than the frequentist approaches.
This study partially supports the Bayesian paradigm
results of (Ahmad et al., 2019). Even though it is arguable
to say which of the methods offer accurate estimates, it
can be contended that the supplement of uncertainties
via IPs in the Bayesian framework significantly enhanced
the findings of the estimates for ADMRS at different
weather stations over the country. Conversely, the preci-
sion of the estimates could be more improved with a suit-
able choice of weather stations used for the elicitation
of IPs.

4 | CONCLUSION

In this paper, our attention was to develop the modelling
of extreme rainfall patterns all over the country by apply-
ing frequentist and Bayesian methods. Frankly speaking,
we were unable to analyse the data of all stations across
the country. Therefore, the ADMRS of suitable weather
stations of the country were chosen by keeping in mind
that the environmental conditions are homogenous
across the stations in the provinces of the country. The
data used for this study from different weather stations
around the country were shown to follow the family of
extreme value distributions (i.e., GEV distribution). In a
frequentist setting, the parameters of GEV distribution

were estimated through MLE and LM methods. Further-
more, RLs for (10, 25, 50, 100, and 500 years) were also
calculated for MLE and LM methods. The RLs based on
LM were showed consistency while examined by the
birds-eye view. But, the results obtained from both
methods provided evidence that there would be extreme
rain events across the country in the future.

Modelling the behaviour of such extremes events
within the Bayesian paradigm at different weather sta-
tions throughout the country offers more beauty to this
paper. Bayesian MCMC is respected when climatic indi-
cations are unusual, and also the behaviour of extreme
rainfall is similar over the region from which the data
were acquired. Consequently, in these circumstances, the
authors have preferred a Bayesian paradigm over the
frequentist methods. This needs a genuine construction
of IPs, thus it provides great estimation accuracy. Similar
to the frequentist setting, in the Bayesian framework, the
parameter of GEV distribution and RLs for (10, 25,
50, 100, and 500 years) were estimated via NIPs and IPs
formulated from two suitable weather stations over the
country. Moreover, the parameter estimates and RLs for
GEV were sensitive to those sites used for the elicitation
of IPs. Consequently, the present study also supports
proper choices of the neighbouring stations, since the
devising of IPs is significant as the estimates and the
accuracies are profound to these priors.

Additionally, assessment measures were used to
adopt a superior method for modelling ADMRS among
frequentist and Bayesian approaches. The smaller values
of assessment measures proved the precision of the
Bayesian MCMC method associated with IPs. Thus, our

TABLE 8 Assessment measures results for the frequentist methods and Bayesian method (both for noninformative and informative

priors)

Study locations

Frequentist methods Bayesian method

MLE L-moments Noninformative Mohenjo-daro D.I. Khan

RRMSE RAE RRMSE RAE RRMSE RAE RRMSE RAE RRMSE RAE

Rohri 0.245 1.576 0.285 1.581 0.230 1.575 0.221 1.358 0.214 1.534

Nawabshah 0.254 1.872 0.293 1.961 0.249 1.824 0.246 1.784 0.231 1.813

Hyderabad 0.239 1.739 0.263 1.930 0.225 1.706 0.210 1.697 0.205 1.690

Chhor 0.206 2.044 0.224 2.262 0.202 2.010 0.198 1.672 0.191 1.622

Khuzdar 0.177 1.674 0.182 1.836 0.174 1.103 0.176 1.629 0.173 1.611

Lasbela 0.220 1.618 0.239 1.946 0.221 1.608 0.204 1.387 0.227 1.401

Pasni 0.217 1.776 0.24 2.077 0.215 1.743 0.203 1.661 0.200 1.594

Jacobabad 0.271 1.239 0.257 1.212 0.276 1.282 0.247 1.208 0.198 1.190

Drosh 0.114 1.945 0.117 2.023 0.112 1.923 0.111 1.901 0.109 1.894

Chitral 0.135 1.396 0.151 1.738 0.134 1.347 0.133 1.302 0.130 1.116

Lahore 0.145 1.997 0.154 2.218 0.142 1.991 0.131 1.989 0.114 1.985
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current methodology could be implemented easily to
other ungagged sites of the country. Also, the informa-
tion from the neighbouring countries (for instance, India,
Afghanistan, and Iran) could be utilized as prior knowl-
edge. On the other hand, the findings of the proposed
method could be very helpful for policymakers and
hydrologists. Hence, engineers can take help from this
study in designing dams, bridges, culverts, and flood con-
trol devices in Pakistan. The study could be improved
more by considering nonstationary rainfall series and by
inspecting a linear time trend in the location parameter
of GEV, and also with the exercise of spatial modelling.
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