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Abstract
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1 Introduction

Predicting the dynamics of economic variables is a key input for policy and investment de-

cision making processes. For example, forecasts of inflation influence both policy makers

in their monetary and fiscal policy decisions as well as investors seeking to hedge against

inflation risk. Similarly, forecasting asset returns is crucial for optimal portfolio allocation

and represents one of the fundamental goals of empirical asset pricing. However, economic

forecasting is notoriously difficult since the expected variation of economic outcomes is often

buried under the noise of realised economic activity. To address this issue, market partici-

pants and researchers, alike, often leverage on large data sets and rely on high-dimensional

forecasting models, of which regression analysis is often a core building block.

As the nature of the variables carrying significant explanatory power is arguably uncertain

a priori, decision makers often consider the entire set of available predictors – mitigating the

risk of omitting important information – and select a posteriori those which correlates the

most with the targeted economic outcome. For this reason, variable selection techniques have

become increasingly popular tools for economic forecasting, especially within the context

of linear regression models (see, e.g., Giannone et al., 2021). However, and perhaps not

surprisingly, the same variable selection method could argue in favour of different predictors

for the same target outcome over different time periods. Such discrepancy stem from the fact

that predictability likely changes over time, either at the intensive margin – a variable carry

significant forecasting power for longer –, or at the extensive margin – more predictors carry

significant explanatory power at a given point in time. In other words, the model dimension

on which decision makers can act upon is potentially varying over time.1

In this paper, we address this issue and develop methodology and theory for a novel

Bayesian dynamic variable selection method for high-dimensional predictive regressions with

time-varying parameters. Specifically, we propose a dynamic Bernoulli-Gaussian (BG hence-

forth) regression specification whereby variable selection takes the form of a smooth latent

stochastic process which interacts with a conventional dynamic linear model (see, e.g., West

and Harrison, 2006). Posterior estimates are obtained via a novel semi-parametric variational

Bayes inference approach, expanding on Rohde and Wand (2016) and Ormerod et al. (2017).

We provide evidence that this approach represents a more efficient alternative to a Markov

Chain Monte Carlo (MCMC) method with comparable posterior concentration properties.

1This is often referred in the literature as a distinction between “horizontal sparsity” and “vertical”
sparsity (see, e.g., Uribe and Lopes, 2020; Ročková and McAlinn, 2021).
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Our approach towards variable selection has three key features: first, the posterior esti-

mates require only a minimal set of assumptions on hyper-parameters and initial conditions

(see Section 2.2). This is particularly relevant within the context of high-dimensional regres-

sion models with time-varying parameters where tailoring individual hyper-parameters can

be prohibitive. Second, our approach allows for dynamic selection of “active” predictors.

That is a point mass posterior inclusion probability is placed at zero when a predictor does

not carry significant explanatory power at a given time period. Third, we can sequentially

reduce the model dimension by discarding those predictors which does not carry information

over the entire sample, while exploring the trajectory of sparsity of the remaining time-

varying regression coefficients. This improves the computational cost and the estimation

efficiency, and thus the accuracy of the posterior estimates.2

We investigate the accuracy of both dynamic variable selection and posterior point es-

timates based on an extensive simulation setting in which different regression parameters

display different patterns over time. As benchmarks, we first consider a variety of estab-

lished static variable selection methods, such as the two-component mixture priors of George

and McCulloch (1993); Ročková and George (2014) and Giannone et al. (2021), the normal-

gamma prior of Griffin and Brown (2010) and the horseshoe prior of Carvalho et al. (2010).

For these static prior formulations, a simple dynamic is imposed via a rolling window, a

widely used non-parametric approach to approximate parameters time variation (see, e.g.,

Inoue et al., 2017).3 In addition, we compare our dynamic BG method against two recent

developments in dynamic variable selection in time-varying regression models, such as the dy-

namic spike-and-slab prior of Koop and Korobilis (2020) and Ročková and McAlinn (2021).

Overall, the simulation results suggest that our dynamic BG model outperforms these com-

peting approaches both with respect to the identification of the significant predictors over

time, as well as the accuracy of the posterior point estimates.

Intuitively, the ability to identify more accurately which predictors matter over time

should be of first-order importance for forecasting and decision making. To this aim, we

compare our model vis-á-vis a comprehensive set of alternative regression-based forecast-

ing strategies within the context of two common problems in macroeconomics and finance:

inflation forecasting based on a large set of macroeconomic variables (see, e.g., Stock and

2This is akin to variance inflation when keeping irrelevant predictors in least squares estimates. Fava and
Lopes (2021) showed both in simulation and empirically the effect of irrelevant predictors in the context of
discrete mixture priors for variables selection.

3Sparsity in the posterior estimates of the global-local shrinkage priors is imposed via the signal adaptive
variable selector (SAVS henceforth) of Ray and Bhattacharya (2018).
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Watson, 2006; Faust and Wright, 2013) and the predictability of the equity premium (see,

e.g., Welch and Goyal, 2008; Rapach et al., 2010; Dong et al., 2022).

As far as inflation forecasting is concerned, we consider more than 220 quarterly macroe-

conomic predictors from the FRED-QD database of McCracken and Ng (2020). The target

variables consist of four measures of inflation – namely total CPI, core CPI, GDP deflator,

and PCE deflator –, for four different forecasting horizons – from one to eight quarters ahead.

Perhaps not surprisingly, the empirical results confirm the widespread conventional wisdom

that parsimonious models, such as the unobserved component model of Stock and Wat-

son (2007), represent rather challenging benchmarks. Nevertheless, our dynamic BG model

outperforms all static and dynamic variable selection methods which make use of macroe-

conomic predictors, both in a mean-squared error sense and in density forecasts, and across

different horizons.

Interestingly, a retrospective analysis of dynamic posterior inclusion probabilities show

that (1) only a handful of predictors carry a meaningful explanatory power, and (2) our

model provides an alternative view to some of the main theory-based inflation predictors.

For instance, real consumption expenditure, which proxies demand pressure on inflation,

carries predictive power on the one-quarter ahead core CPI only for a short-period during

2021, a period characterised by large fiscal stimulus. Similarly, short-term unemployment

carries a significant signal to predict one-quarter ahead change in the GDP deflator from

the great financial crisis towards the end of the sample for the GDP deflator. The latter

could be interpreted as evidence in favour of a time-varying Phillips curve, whereby the

inverse relationship between unemployment and inflation is supported by the data but only

in specific periods.

For the application on financial forecasting, we build upon Jensen et al. (2022) and assess

the predictive content of more than 150 characteristic-managed portfolios for the one-month

ahead returns on the aggregate stock market portfolio, expanding on the original framework

of Dong et al. (2022). Consistent with the latter, both the prediction from the recursively cal-

culated sample mean and equal-weight forecasts from individual predictors represent rather

challenging benchmarks. Nevertheless, the empirical results show that our dynamic sparse

regression framework outperforms both static and dynamic variable selection methods. Fi-

nally, a retrospective analysis of dynamic posterior inclusion probabilities suggests that ex-

pected returns correlates with only few risk factors related to trading frictions and liquidity,

such as max1 21d (see Bali et al., 2011) and turnover 126d (see Datar et al., 1998).

3



This paper connects to two main streams of literature. The first relates to the use of

Bayesian methods for variable selection in high-dimensional regression models. Conventional

approaches towards selecting predictors are mostly confined in the realm of static regression

models (see, e.g., Ročková and George, 2018; Giannone et al., 2021; Fava and Lopes, 2021;

Ray and Szabó, 2022 and the references therein). This is despite there is ample evidence in

the economic literature on the importance of considering time-varying effects of predictors on

both macroeconomic and financial forecasting (see, e.g. Primiceri, 2005; West and Harrison,

2006; Dangl and Halling, 2012; Pettenuzzo et al., 2014; Farmer et al., 2022, among others).

A notable early exception to such static approach is Nakajima and West (2013), which

introduce a dynamic regression framework whereby time-varying coefficients are excluded

based on a latent threshold parameter. Similarly, Kalli and Griffin (2014) proposed a normal-

gamma autoregressive process to dynamically shrink towards zero unimportant coefficients.

The latter approach falls into the class of dynamic shrinkage processes studied in Kowal

et al. (2019). Other methods aim to perform model selection rather than shrinkage. For

example, Koop and Korobilis (2020) expand on Koop and Korobilis (2012) by leveraging the

flexibility of variational Bayes inference and consider a dynamic spike-and-slab prior spec-

ification for variable selection in time-varying regression models, while assuming stochastic

and independent inclusion probabilities. Similarly, Uribe and Lopes (2020) and Ročková

and McAlinn (2021) proposed a dynamic variable selection method that leverages on the

class of mixture priors originally proposed by Mitchell and Beauchamp (1988); George and

McCulloch (1997).

A second strand of literature we contribute to is related to regression-based economic

forecasting. In particular, inflation forecasting represents a widely used setting to test the

accuracy of large-scale predictive regression models within the context of policy making

(see, e.g., Stock and Watson, 2007, 2010; Chan et al., 2012; Koop and Korobilis, 2012;

Korobilis, 2013; Kalli and Griffin, 2014; Bitto and Frühwirth-Schnatter, 2019; Ročková and

McAlinn, 2021, among others). The time series variation of expected inflation is particularly

problematic to measure, since conventional predictors often do not seem to capture significant

co-movements and cross-signals between economic activity and prices which might improve

out-of-sample predictability. Similarly, forecasting the dynamics of stock returns represents

a particularly challenging task for predictive regressions due to the small signal-to-noise ratio

in financial returns (see, e.g., Welch and Goyal, 2008).
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2 Model specification and inference

We present our approach as a dynamic linear predictive model that link a scalar response yt

at time t to a set of p known predictors xt−1 = (x1t−1, . . . , xpt−1)′ through the relation

yt =

p∑
j=1

βjtxjt−1 + εt, εt ∼ N(0, eht), t = 1, . . . , n, (1)

where βt = (β1t, . . . , βpt)
′ is a time-varying vector of regression coefficients and ht = log σ2

t is

the log of the unknown observational variance of the residual εt at time t (see, e.g., West and

Harrison, 2006). Notably, variable selection is particular relevant for time-varying parameter

regressions. This is because as the model propagates forward, the inclusion of irrelevant

predictors generate a proliferation of the state space and potentially accumulates noise, with

detrimental consequences for the out-of-sample predictive performance. Therefore, seeking

sparsity in the set of predictors is a natural remedy against the loss of statistical efficiency

and forecast ability.

In this paper, we adopt the point of view that predictors can dynamically enter or leave

the regression model as time progresses. Specifically, the set of “active” predictors – meaning

the variables that carry significant predictive power – can change over time according to

βjt = bjtγjt, where bjt = bjt−1 + vjt vjt ∼ N
(
0, η2

j

)
, (2)

with bj0 ∼ N
(
0, k0η

2
j

)
the initial state, and γjt ∈ {0, 1} an indicator variable which identifies

if the jth predictor is included or not in the model specification. This process is reminiscent of

a dynamic Bernoulli-Gaussian (BG) regression model (see, e.g., Soussen et al., 2011; Ormerod

et al., 2017). By leveraging the first-order Markov property, the joint distribution of bj =

(bj0, . . . , bjn)′ for j = 1, . . . , p can be re-written as p(bj) = p(bj0)p(bj1|bj0) . . . p(bjn|bjn−1).

This admits a Gaussian Markov random field (GMRF) representation bj ∼ Nn+1(0, η2
jQ
−1)

with Q a tridiagonal precision matrix with diagonal elements q1,1 = 1 + 1/k0, qn+1,n+1 = 1,

and ql,l = 2 for l = 2, . . . , n. The off-diagonal elements are ql,m = −1 if |l −m| = 1 and 0

elsewhere (see Rue and Held, 2005). The same representation applies for the log-volatility

process h = (h0, . . . , hn)′ with initial state h0 ∼ N (0, k0ν
2), such that ht = ht−1 + et with

et ∼ N (0, ν2) admits h ∼ Nn+1(0, ν2Q−1).

Equation (2) assumes that the time-varying process {bjt}Tt=1, give rise to the regression

coefficients {βjt}Tt=1 only by interacting with the latent indicator {γjt}Tt=1. This formulation

5



implies that the posterior inclusion probability P(γjt = 1) is a persistent latent stochastic

process. This differs from Koop and Korobilis, 2020; Uribe and Lopes, 2020; Ročková and

McAlinn, 2021 in which variable selection is embedded into a prior spike-and-slab structure.4

The indicator variable γjt given the auxiliary parameters ωjt is assumed to be γjt|ωjt ∼
Bern(expit(ωjt)) for j = 1, . . . , p, where expit(·) is the inverse of the logit function. As a

result, the persistence of the inclusion probability P(γjt = 1) is driven by ωj = (ωj0, . . . , ωjn)′,

which admits a GMRF representation of the form ωj ∼ Nn+1(0, ξ2
jQ
−1). The marginal

distribution for the vector γj = (γj1, . . . , γjn)′ is retrieved by integrating out ωj as,

p(γj1, . . . , γjn) =

∫
p(ωj)

n∏
t=1

p(γjt|ωjt) dωj, (3)

so that γj1, . . . , γjn represent autocorrelated latent states for each j = 1, . . . , p.

2.1 Variational Bayes inference

A variational Bayes (VB) approach to inference requires to minimize the Kullback-Leibler

(Kullback and Leibler, 1951) divergence measure (KL) between an approximating density

q(ϑ) and the true posterior density p(ϑ|y), (see, e.g. Blei et al., 2017). The KL divergence

cannot be directly minimized with respect to ϑ because it involves the expectation with

respect to the unknown true posterior distribution. Ormerod and Wand (2010) show that the

problem of minimizing KL can be equivalently stated as the maximization of the variational

lower bound (ELBO) denoted by p (y; q):

q∗(ϑ) = arg max
q(ϑ)∈Q

log p (y; q) , p (y; q) =

∫
q(ϑ) log

{
p(y,ϑ)

q(ϑ)

}
dϑ, (4)

where q∗(ϑ) ∈ Q represents the optimal variational density and Q is a space of functions.

The choice of the family of distributions Q is critical and leads to different algorithmic

approaches. We consider a mean-field variational Bayes (MFVB) approach which is based

on a non-parametric restriction for the variational density, i.e. q(ϑ) =
∏p

i=1 qi(ϑi) for a

partition {ϑ1, . . . ,ϑp} of the parameter vector ϑ. Therefore, a closed form expression for

4For instance, in existing dynamic spike-and-slab formulations of the evolution of γjt is assumed to be a
priori independent over time (see Koop and Korobilis, 2020) or having a deterministic evolution of P(γjt = 1),
given the information up to t− 1 (as in Ročková and McAlinn, 2021).
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the optimal variational density of each component q(ϑj) is defined as:

q∗(ϑj) ∝ exp
{
Eq(ϑ\ϑj)

[
log p(y,ϑ)

]}
, q(ϑ \ ϑj) =

p∏
i=1
i 6=j

qi(ϑi), (5)

where the expectation is taken with respect to the joint approximating density with the j-th

element of the partition removed q(ϑ \ ϑj). This allows to implement a coordinate ascent

variational inference (CAVI) algorithm to estimate the optimal density q∗(ϑ). Equation (5)

shows that the factorization q(ϑ) plays a key role. Let ϑ = (h′,b′,γ ′,ω′, ν2,η2′, ξ2′)′ the

joint distribution of the model parameters and latent states. The key ingredient for the

mean-field factorization is the joint distribution p(y,ϑ), which can be factorized as follows,

p(y,ϑ) = p(y|ϑ)p(h)p(ν2)

p∏
j=1

p(bj|η2
j )p(ωj|ξ2

j )p(η
2
j )p(ξ

2
j )

n∏
t=1

p(γjt|ωjt)︸ ︷︷ ︸
p(γj |ωj)

. (6)

Notice that the full conditional distribution of ωj is not of a know form. Following Polson

et al. (2013), we exploit a Polya-Gamma representation,

p(γjt|ωjt) =

∫ +∞

0

p(γjt|zjt, ωjt)p(zjt|ωjt) dzjt, (7)

where p(zjt) is the probability density function of a Polya-Gamma PG(1, 0) random variable.

This allows for a computationally tractable approximation of Eq.(6). Therefore, we propose

a mean-field factorization of the form,

q(ϑ) = q(h)q(ν2)

p∏
j=1

q(bj)q(ωj)q(η
2
j )q(ξ

2
j )

n∏
t=1

q(γjt)q(zjt), (8)

where a joint distribution for h, bj, and ωj is required in order to preserve the time depen-

dence and to provide a global approximation for the vector of latent states. We now discuss

in turn each of the components in q(ϑ).

Optimal variational densities. We now discuss in details the main optimal variational

densities for the estimation of the time-varying regression parameters q∗(bj), the variable

selection indicators q∗(γjt), and the stochastic log-volatility process q∗(h). For the interested

reader, the full set of analytical derivations and proofs is available in Appendix B.
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Proposition 2.1. The optimal variational density for the time-varying regression parameters

bj = (bj0, bj1, . . . , bjn)′ is a multivariate Gaussian q∗(bj) ≡ Nn+1(µq(bj),Σq(bj)), where:

Σq(bj) = (Dj
2 + µq(1/η2j )Q)−1, µq(bj) = Σq(bj)Djµq(ε−j), (9)

where Dj and D2
j are diagonal matrices with elements equal to [Dj] = µq(1/σ2

t )µq(γjt)xjt−1 and

[Dj]
2
t = µq(1/σ2

t )µq(γjt)x
2
jt−1, respectively. Moreover, µq(ε−j) is the vector of partial residuals

with elements µq(ε−jt) = yt −
∑p

k=1,k 6=j xkt−1µq(γkt)µq(bkt).

Proof. See proof B.1 in Appendix B.

Proposition 2.1 shows that both the posterior mean and variance of a given vector of

regression parameters for the variable j, depends on the posterior estimates µq(γjt) of the

entire trajectory of γjt, t = 1, . . . , n from the optimal variational density q∗(γjt). The latter

is defined in Proposition 2.2.

Proposition 2.2. The optimal variational density for the parameters γjt is a Bernoulli ran-

dom variable q∗(γjt) ≡ Bern(expit(ωq(γjt))), where expit(·) is the inverse of the logit function

and ωq(γjt) = µq(ωjt) − 1
2
µq(1/σ2

t )(x
2
jt−1Eq[b2

jt]− 2µq(bjt)xjt−1µq(ε−jt)).

Proof. See proof B.2 in Appendix B.

The parameter µq(1/σ2
t ) ≡ Eq[1/σ2

t ] and is defined as in Remark B.1 in Appendix B. In

addition, µq(ωjt) represents the mean of the optimal variational density for the auxiliary

parameter ωj. The latter is defined in Proposition 2.3.

Proposition 2.3. The optimal variational density for the parameter ωj is a multivariate

Gaussian q∗(ωj) ≡ Nn+1(µq(ωj),Σq(ωj)), where:

Σq(ωj) = (Diag(0,µq(zj)) + µq(1/ξ2j )Q)−1, µq(ωj) = Σq(ωj)(0,µ
ᵀ
q(γ̄j)

)ᵀ, (10)

with µq(γ̄j) = µq(γj) − 1/2ιn.

Proof. See proof B.3 in Appendix B.

The means µq(zj), µq(1/ξ2j ) of the optimal variational densities for the auxiliary variable

q∗(zjt) ≡ PG(1,
√
µq(ω2

jt)
) and the state variance q∗ (ξ2) are defined in Appendix B in Propo-

sition B.7 and B.9, respectively. Recall from Eq.(2) that βjt = bjtγjt. The corresponding

optimal variational density is provided in Proposition 2.4.
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Proposition 2.4. Let q∗(bj) and q∗(γjt) be the optimal variational densities presented in

Propositions 2.1 and 2.2. Define βj = Γjbj, where the matrix Γj = diag(1, γj1, . . . , γjn). The

optimal variational density of βj is given by a mixture of multivariate Gaussian distributions:

q∗(βj) =
∑
s∈S

ws Nn+1(Dsµq(bj),D
1/2
s Σq(bj)D

1/2
s ), (11)

where S is a sequence of {0, 1} of length n with cardinality |S| = 2n, the diagonal matrix

Ds = diag(1, s1, . . . , sn), and mixing weights:

ws =
n∏
t=1

µstq(γjt)(1− µq(γjt))
1−st , (12)

where s = (s1, . . . , st, . . . , sn) ∈ S is an element in S. Moreover, the mean and variance can

be computed analytically:

µq(βj) = µq(Γj)µq(bj), (13)

Σq(βj) = (µq(γj)µ
′
q(γj)

+ Wµq(γj)
)�Σq(bj) + Wµq(γj)

� µq(bj)µ
′
q(bj)

, (14)

where Wµq(γj)
is a diagonal matrix with elements

(
1, {µq(γjt)(1− µq(γjt))}nt=1

)
.

Proof. See proof B.4 in Appendix B.

For the stochastic volatility process, we adopt a parametric approach to find the optimal

variational density q∗(h). Specifically, we leverage on a GMRF representation of the vector

h ∼ Nn+1(0, ν2Q−1) and exploit the results in Rohde and Wand (2016). They provide an

iterative updating scheme for the variational parameters when the approximating density is

a multivariate Gaussian. Proposition 2.5 provides the optimal updating scheme.

Proposition 2.5. Let ε2 = ε� ε with components [ε2]t = (yt−β′txt)2. Assuming a GMRF

approximation q∗(h) ≡ Nn+1(µq(h),Ω
−1
q(h)), with mean vector µq(h) and variance-covariance

matrix Σq(h) = Ω−1
q(h), an iterative optimization algorithm can be set as:

Σnew
q(h) =

[
∇2
µq(h),µq(h)

S(µoldq(h),Σ
old
q(h))

]−1

(15)

µnewq(h) = µoldq(h) + Σnew
q(h)∇µq(h)S(µoldq(h),Σ

old
q(h)). (16)

9



where

∇µq(h)S(µoldq(h),Σ
old
q(h)) = −ιn

2
+

1

2
Eq(ε2)� e−µ

old
q(h)

+σ2 old
q(h)

/2 − µq(1/ν2)Qµ
old
q(h), (17)

and

∇2
µq(h),µq(h)

S(µoldq(h),Σ
old
q(h)) = −1

2
Diag(Eq(ε2)� e−µ

old
q(h)

+σ2 old
q(h)

/2)− µq(1/ν2)Q, (18)

denote the first and second derivative of S(µq(h),Σq(h)) with respect to µq(h) and evaluated

at (µoldq(h),Σ
old
q(h)), and σ2

q(h) = diag(Σq(h)).

Proof. See proof B.5 in Appendix B.

Proposition B.6 in Appendix B also reports the optimal variational density for the ho-

moskedastic case in which the prior for the variance of the residuals in Eq.(1) is an inverse-

gamma σ2 ∼ IG(Aσ, Bσ). In addition, Propositions B.8, B.9, and B.10 in Appendix B report

the optimal variational densities q∗(η2
j ), q

∗(ξ2
j ), and q∗(ν2), respectively. As far as the prior

distributions are concerned, we place inverse-gamma priors for the variances parameters

ν2 ∼ IG(Aν , Bν), η
2
j ∼ IG(Aη, Bη), and ξ2

j ∼ IG(Aξ, Bξ), which represents a common choice

in Bayesian analysis. We discuss the choice of prior hyper-parameters in Section 2.2.

Smoothing the sparsity dynamics. Proposition 2.2 shows that the variational den-

sity of q(γj) =
∏n

t=1 q(γjt) is such that γjt ∼ Bern(expit(ωq(γjt))). This implies that the

whole time trajectory of posterior inclusion probabilities can be obtained as the mean vector

Eq(γj) = expit(ωq(γj)). Although computationally convenient, this is an entirely data-driven

approach which could produce erratic posterior inclusion probabilities, especially with noisy

observations. The right panel of Figure 1(a) shows this case in point. The posterior inclusion

probability P(γjt = 1) could point towards a given predictor for a very short period of time.

This could be quite inconvenient in practice since βjt = bjtγjt, such that the dynamics of βjt

inherits the erratic behavior of the posterior inclusion probability as shown in Figure 1(a)).

To address this issue, we propose an alternative parametric approximation of the varia-

tional density of q(γj) which regularise the estimates of the time trajectory of P(γjt = 1)

for t = 1, . . . , n. In particular, we approximate the sequence of densities {q(γjt)}nt=1 with

the closest approximation {q̃(γjt)}nt=1 in terms of KL divergence; that is, {q̃(γjt)}nt=1 leads to

a smooth sequence of posterior inclusion probabilities, whose expected values coincide with

the non-smooth estimates. Proposition 2.6 explains the procedure in details.
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(a) Non-smooth estimates of µq(β) and (µq(γ1), . . . , µq(γn))

(b) Smooth estimates of µq(β) and (µq(γ1), . . . , µq(γn))

Figure 1: Smoothing the time-varying parameters µq(βj) and the posterior probability of inclusion
P(γjt = 1) for t = 1, . . . , n.

Proposition 2.6. A smooth estimate for the trajectory of the inclusion probabilities can

be achieved assuming q̃(γj) =
∏n

t=1 q̃(γjt) such that q̃(γjt) ≡ Bern(expit(w′tfj)) with con-

straints on the mean. Therefore, the expectation of the joint vector γj = (γj1, . . . , γjn)′ is

equal to Eq̃(γj) = Wfj, where W is a n × k B-spline basis matrix. The optimal value

of fj is the solution of the optimization problem f̂j = arg maxfj∈Rk ψ(fj) where ψ(fj) =∑n
t=1

[
(ωq(γjt) −w′tfj)expit(w′tfj) + log(1 + exp(w′tfj))

]
, such that the gradient is equal to

∇fψ(f) =
∑n

t=1 wt(ωq(γjt) −w′tf)
expit(w′tf)

1+exp(w′tf)
.

Proof. See proof B.11 in Appendix B.

The right panel of Figure 1(b) shows the smoothed estimates of the original probability

of inclusion (left panel) based on Proposition 2.6. As a by-product of a smoother posterior

inclusion probability, the dynamics of the corresponding regression coefficient is also regu-
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larised, as shown in the left panel of Figure 1(b). Notice that the matrix W in Proposition

2.6 does not have to be an n×k B-spline basis matrix; our formulation is general and allows

for alternative forms of smoothing, such as Daubechies wavelet basis functions (see, e.g.,

Bianchi et al., 2022a). Appendix B.1 discusses different smoothing assumptions in detail.

2.2 Theoretical properties of the estimation algorithm

We now present some key theoretical results and numerical properties of our variational

Bayes estimation algorithm. In particular, we focus on the behavior of variational densities’

updates from one iteration to the next of the optimization process. The iterative optimization

to perform approximate posterior inference is sketched in Algorithm 1. The theoretical

properties of the optimal density updates between two consecutive iterations are cumbersome

to analyze when the system of equations from Proposition 2.1 to 2.5 hold simultaneously.

Instead, we will analyze the limiting properties of Algorithm 1 as the inclusion probabilities

tend to zero, i.e., sparsity inducing. Proposition 2.7 extends the main result of Ormerod

et al. (2017) to the dynamic variable selection with time-varying regression coefficients.

Algorithm 1: Variational Bayes for dynamic sparse regression models.

Initialize: q(ϑ), ∆ϑ, Aν , Bν , Aη, Bη, Aξ, Bξ

while
(
∆̂ϑ > ∆ϑ

)
do

for j = 1, . . . , p do
Update q(bj) as in 2.1; and q(ηj) as in B.8;
Update q(ωj) as in 2.3 and q(ξj) as in B.9;
for t = 1, . . . , n do

Update q(zjt) as in B.7;
Update q(γjt) as in 2.2 (non-smooth) or 2.6 (smooth);

end

end
Update q(h) as in 2.5 (heteroskedastic) or q(σ2) as in B.6 (homoskedastic);
Update q(ν2) as in B.10;

Compute ∆̂ϑ = q(ϑ)(iter) − q(ϑ)(iter−1) ;
end

Proposition 2.7. Assume that the maximum over time of the inclusion probabilities, for a

given variable j, at the i-th iteration of the algorithm is such that maxt∈{1,...,n} µ
(i)
q(γjt)

= ε,

and ε� 1 is small enough. Moreover, let Σ
(i)
q(ωj)
−Σ

(i−1)
q(ωj)

≥ 0, then:

1. µ
(i+1)
q(γjt)

= expit
{
µ

(i+1)
q(ωjt)

− 1
2
µ

(i+1)

q(1/σ2
t )
x2
jt−1µ

−1(i+1)

q(1/η2j )
qtt +O(ε)

}
, qtt = [Q−1]tt ≥ 0;
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2. µ
(i+1)
q(ωjt)

= −1/2
∑n

k=1 stk +O(ε), stk = [Σq(ωj)]tk ≥ 0;

3. µ
(i+1)
q(ωjt)

≤ µ
(i)
q(ωjt)

decreases after each iteration.

Proof. See proof C.1 in Appendix C.5

Proposition 2.7 and Lemma 16 in Ormerod et al. (2017) leads to two key numerical results:

first, for ε ≈ 0, the following approximation for the update of the inclusion probabilities holds:

µ
(i)
q(γjt)

≈ expit

{
µ

(i+1)
q(ωjt)

− 1/2µ
(i+1)

q(1/σ2
t )
x2
jt−1

[
µ

(i+1)

q(1/η2j )

]−1

qtt

}
. (19)

This implies that for M(i) = arg maxt∈{1,...,n} µ
(i)
q(ωjt)

� 0, after i iterations, the sequence

{µ(i)
q(γjt)
}nt=1 is indistinguishable from zero. As a result, our algorithm concentrates the pos-

terior densities to a point mass at zero for all t. Second, if µ
(i)
q(γjt)

≈ 0, ∀t, then all successive

updates ik ≥ i imply µ
(ik)
q(γjt)

≈ 0 since µ
(ik)
q(ωjt)

≤ µ
(i)
q(ωjt)

and therefore the updates M(ik) ≤ M(i).

Figure 2: Left panel shows variational update over iterations (x-axis) until convergence of the
vector of posterior inclusion probabilities (µq(γj1), . . . , µq(γjn)) (y-axis), for a parameter j which is
always zero ∀t. The dashed line identifies the iteration at which the conditions of Proposition 2.7
are satisfied for ε = 0.01. The right panel depicts the decreasing behaviour of µq(ωjt), ∀t.

5For the ease of exposition, we leave the interested reader to Appendix C for some of the definitions and
lemmas which are instrumental for the proof.

6Let a ∈ R+, then, as a→ +∞, the following expansions hold: expit(−a) = exp(−a) +O(exp(−2a)) and
expit(a) = 1− exp(−a) +O(exp(−2a)).
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Figure 2 provides a visual representation of Proposition 2.7 for a simple simulation set up

in which a given predictor is never included in the model (see Section 3.1). The dashed line

identifies the iteration at which the conditions in Proposition 2.7 are satisfied for ε = 0.01.

After few iterations µq(γjt) remains zero ∀t. As a result, the corresponding j-th predictor

can be deleted from the regression specification. This result provides a dimension reduction

strategy which is summarised in Algorithm 2. Specifically, we can remove the j-th variable

from the set of predictors during the estimation. Such automatic exclusion strategy improves

the computational efficiency when p increases, but the signal p̄ ≤ p remains constant, where

p̄ = card(J ) and the set J = {j :
∑n

t=1 γjt > 0} collects the indexes of regression coefficients

that are included in the model at least for one t.

Algorithm 2: Efficient variational Bayes for dynamic sparse regression models.

Initialize: q(ϑ), ∆ϑ, Aν , Bν , Aη, Bη, Aξ, Bξ

while
(
∆̂ϑ > ∆ϑ

)
do

for j = 1, . . . , p do
Update q(bj) as in 2.1; and q(ηj) as in B.8;
Update q(ωj) as in 2.3 and q(ξj) as in B.9;
for t = 1, . . . , n do

Update q(zjt) as in B.7;
Update q(γjt) as in 2.2 (non-smooth) or 2.6 (smooth);

end

end
Update q(σ) as in B.1 (heteroskedastic) or B.6 (homoskedastic);
Update q(ν2) as in B.10;
if assumptions in 2.7 hold then

for j = 1, . . . , p do
if maxt{µq(γjt)} < ε then

Drop the j-th variable
end

end

end

Compute ∆̂ϑ = q(ϑ)(iter) − q(ϑ)(iter−1) ;
end

Hyper-parameters and algorithm initialization. In this section we focus on the key

hyper-parameters and initialization choices. As far as the inclusion probabilities are con-

cerned, we follow Koop and Korobilis (2020) and set µ
(0)
q(γjt)

= 1/2, ∀t, j. Next, we follow

Ormerod et al. (2017) and set Aσ = Bσ = Aη = Bη = 0.01 to maintain non-informativeness.
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Notably these are all fairly standard choices for conjugate priors. Two crucial hyper-

parameters that deserve a more careful scrutiny are the couple (Aξ, Bξ); this is because a key

property of our dynamic sparse regression model is the time-variation of γjt|ωjt, where the dy-

namics of the stochastic process ωjt is governed by the conditional variance ξ2
j ∼ IG(Aξ, Bξ).

In what follows we study the resulting variational mean and variance of {ωjt}nt=1, namely

{µq(ωjt)}nt=1 and Σq(ωj), for j = 1, . . . , p, for three alternative limit cases. In addition, since

γjt directly depends on ωjt, we further show how this reflects on the posterior inclusion

probability trajectory {µq(γjt)}nt=1, for j = 1, . . . , p. These comparative statics are based on

Proposition 2.3 and Proposition B.9 in the Appendix, and allows us to provide a transparent

strategy to select meaningful values of the couple (Aξ, Bξ). The first scenario considers Aξ

constant and Bξ → +∞.
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Figure 3: Scenario A: Bξ → +∞. (a) Depicts the variational correlation matrix for the process
{ωjt}nt=1 obtained from Σq(ωj). (b) Plots the trajectory of {µq(ωjt)}nt=1. (c) Shows the effect on the
posterior inclusion probabilities {µq(γjt)}nt=1 compared to the simulated (red points).

Figure 3 reports the resulting variational covariance matrix Σq(ωj) and the corresponding

trajectory of {µq(ωjt)}nt=1 and posterior estimates of the inclusion probabilities {µq(γjt)}nt=1.

As Bξ → +∞, the process {ωjt}nt=1 tends to be i.i.d – Σq(ωj) tends to a diagonal matrix.

This means that we lose the time dependence in the a-priori inclusion probability process,

which leads to a highly erratic dynamics of ωjt and, as a result, a highly irregular trajectory

of {µq(γjt)}nt=1. The second scenario considers Aξ → +∞ and Bξ constant. This implies that

µq(1/ξ2j ) → +∞ and, as a consequence, we give infinite weight to the matrix Q when com-

pute Σq(ωj) (see Proposition 2.3). As shown by Figure 4, such strong and informative time

dependence in the a-priori inclusion probability process, leads to posterior inclusion prob-
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abilities {µq(γjt)}nt=1 with low variability around the marginal mean of the process {ωjt}nt=1,

i.e. expit(E(ωjt)) = 0. As a result, no sparsity is captured despite being present in the

underlying data generating process.
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Figure 4: Scenario B: Aξ → +∞. (a) Depicts the variational correlation matrix for the process
{ωjt}nt=1 obtained from Σq(ωj). (b) Plots the trajectory of {µq(ωjt)}nt=1. (c) Shows the effect on the
posterior inclusion probabilities {µq(γjt)}nt=1 compared to the simulated (red points).

The last scenario considers Aξ/Bξ → c1, where c1 ∈ R+ constant. This implies that

µq(1/ξ2j ) → c2, where c2 ∈ R+ and therefore we give moderate weight to the matrix Q

when compute Σq(ωj) (see Proposition 2.3) – i.e, we account for a decreasing correlation as

|t1 − t2|, t1, t2 ∈ {1, . . . , n} increases. As shown by Figure 5, this translates into a moderate

variability in the time dependence in the a-priori inclusion probability process, which leads

to posterior estimates {µq(γjt)}nt=1 that accurately track the underlying dynamics of sparsity.

In the following, we propose to fix Aξ = 2 so that, a-priori, Var(ξ2
j ) = +∞ and Bξ can be

directly interpreted as the mean of ξ2
j . More specifically, to estimate our dynamic sparse

regression model both in the simulation study and the empirical analysis, we set Bξ = 5,

which satisfies Aξ/Bξ → c1. We also test in simulation Bξ = 1 or Bξ = 10 as shown in

Section 3.2. The model performance are broadly consistent for Bξ = 5 and Bξ = 1, while

slightly deteriorates for Bξ = 10.

3 Simulation study

We now perform an extensive simulation study to evaluate the properties of our estimation

framework in a controlled setting. We first compare our variational Bayes method against
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Figure 5: Scenario C: Aξ/Bξ → c1, c1 ∈ R+. (a) Depicts the variational correlation matrix for
the process {ωjt}nt=1 obtained from Σq(ωj). (b) Plots the trajectory of {µq(ωjt)}nt=1. (c) Shows the
effect on the posterior inclusion probabilities {µq(γjt)}nt=1 compared to the simulated (red points).

an equivalent MCMC estimation algorithm. This allows to compare on an equal footing

both inference approaches. Second, we compare the estimation performance of our dynamic

sparse regression model against a variety of alternative static and dynamic variable selection

methods. A particular emphasis will be put on the ability of each method across different

model dimensions in identifying those predictors which enter and leave the model set, vis-a-

vis those predictors who are either never or always in the model specification.

3.1 Variational Bayes vs MCMC

The data augmentation approach based on the Polya-Gamma representation in Eq.(7) has

the main advantage to lead to a more tractable joint distribution p(y,ϑ). This aspect is

crucial to derive an efficient MCMC scheme for Bayesian inference. Appendix A provides a

summary of the full conditionals equivalent to our variational Bayes approximation approach.

This allows to make a coherent comparison between our VB and its MCMC counterpart. To

this aim, we compare the posterior accuracy as proposed by Wand et al. (2011):

ACC(ϑ) =

{
1− 0.5

∫
|q(ϑ)− p(ϑ|y)| dϑ

}
%, (20)

where ϑ is a parameter of interest, q(ϑ) is the variational density and p(ϑ|y) denotes the

posterior distribution sampled via MCMC. Note that the evaluation of the variational Bayes

approximation compared to MCMC is fraught with difficulty. An accurate comparison is
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hampered by the difficulty to determine the convergence whether the MCMC scheme con-

verged to its stationary distribution. In addition, one can arbitrarily trade accuracy with

speed in both an MCMC and in a VB context. With this in mind, we consider the same

hyper-parameters for both the VB and MCMC approaches and choose an arbitrarily large

number of draws, so that comparison between methods focuses on accuracy.

The simulation is set up as follows. We consider p = 3 and n = 100, and generate

{βt}100
t=1 with βt = (β1t, β2t, β3t)

′ such that β1t is a time-varying parameter always included

in the model, β2t is set equal to zero for all the time periods, while β3t shows a dynamic

sparsity pattern. Then, we generate N = 100 replicates from yt =
∑3

j=1 βjtxjt−1 + εt, with

εt ∼ N(0, 0.25) and xjt generated from a standard normal for t = 1, . . . , 100. Notice that for

the purpose of comparing the accuracy of our VB versus its MCMC counterpart, the small

dimension p has a limited impact on the validity of the results. A small-scale time-varying

parameter regression retains the same key properties we want to investigate in terms of

dynamic sparsity, with the main advantage of speeding up the MCMC computation.

For each simulated parameter we report the overlapping posterior densities for one selected

replicate of βjt, j = 1, 2, 3 obtained via VB (blue) vs MCMC (red). In addition, we report

a box-chart for each time t representing the accuracy q∗ (βjt) with respect to the MCMC

p (βjt|y) as per Eq.(20) across simulations. For the sake of brevity, we leave additional results

for q∗ (bjt) and q∗ (γjt) vs their MCMC equivalent to Appendix D.1.
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Figure 6: Comparison with MCMC when β1t is a time-varying parameter with γ1t = 1, for all
t. Left panel shows the overlapping posterior densities of β1t obtained via VB (blue) and MCMC
(red), for one selected replicate. Right panel shows the accuracy over time of q∗ (β1t) compared to
p (β1t|y) across simulations.
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Figure 6(a) shows that q∗ (β1t) is slightly more concentrated around the posterior mean

compared to its MCMC equivalent. This is a by-product of the nature of the approximating

density (see Proposition 2.4): the weights in the mixture defining q∗(β1) are such that ws = 1

if s = (1, 1, . . . , 1) and ws = 0 otherwise. Thus, we only keep one component of the mixture.

This is not the case for MCMC draws which still sample from a Gaussian distribution when

γ1t = 0. Nevertheless, the accuracy of q∗ (β1t) in approximating p (β1t|y) is as high as 80%

as shown by Figure 6(b).

Next, we consider the case in which a given predictor is always excluded over time. Figure

7(a) highlights that VB provides posterior inclusion probabilities tight around zero, as high-

lighted in Proposition 2.7. The weights in the mixture q∗(β2) are ws = 1 if s = (0, 0, . . . , 0)

and ws = 0 otherwise. Hence, we only keep the component of the mixture that identifies

a sequence of Dirac at zero δ0(β2t). On the other hand, MCMC draws show a much lower

concentration of the posterior probability mass at zero. This is reflected in a relatively lower

overlapping – around 75% accuracy – of the posterior density q∗ (β2t) compared to p (β2t|y)

across simulations, as shown by Figure 7(b). The right panels in Figure D.4 report a similar

accuracy for both b2t and γ2t, respectively.
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Figure 7: Comparison with MCMC when β2t is a coefficient constant at zero, i.e. γ2t = 0, for all
t. Left panel shows the overlapping posterior densities of β2t obtained via VB (blue) and MCMC
(red), for one selected replicate. Right panel shows the accuracy over time of q∗ (β2t) compared to
p (β2t|y) across simulations.

Finally, we compare the accuracy of our variational Bayes inference against MCMC for

the time-varying parameter β3t which displays a pattern of dynamic sparsity. Figure 8(a)

depicts a tight approximation to MCMC draws during periods in which the coefficient is
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unambiguously included in the model (initial and final part), while the densities overlap

between VB and MCMC deteriorates when γ3t → 0 as in the middle part of the sample.

This confirms what highlighted in Figures 6(b) and 7(b): when the probability of inclusion

approaches one, the posterior densities of our VB and the equivalent MCMC tend to overlap

almost entirely. On the other hand, when there is less certainty on the inclusion of a given

predictor, or outright certainty of exclusion, the MCMC posterior draws tend to be less

concentrated on the actual inclusion probabilities. The middle panels in Figure D.4 show

that is also applies for b3t and γ3t.
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Figure 8: Comparison with MCMC when β3t is a coefficient that shows dynamic sparsity. Left
panel shows the overlapping posterior densities of β3t obtained via VB (blue) and MCMC (red), for
one selected replicate. Right panel shows the accuracy over time of q∗ (β3t) compared to p (β3t|y)
across simulations.

3.2 Comparison with existing variable selection methods

We now perform an extensive simulation study to compare our dynamic sparse regression

model as outlined in Section 2 against a variety of established Bayesian static and dynamic

variable selection methods. As far as the data generating process is concerned, we consider

M = 100 replicates from the following data generating process yt =
∑p

j=1 βjtxjt−1 + εt with

εt ∼ N(0, 0.25) and {xjt}pj=1 are independently generated at each time t = 1, . . . , n from a

standard normal distribution. Consistent with the empirical application we set the length

of the time series n = 200 and p ∈ {50, 100, 200}. We assume that different coefficients have

different dynamics; for instance, β1t is a time-varying parameter which is always included

in the model, i.e. γ1t = 1 ∀t, β2:7,t show different types of dynamic sparsity – which will be
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discussed later – and β8:p,t is set to zero for all t, i.e. γ8:p,t = 0 ∀t. For the sake of brevity, in

the following we focus on accuracy for regression models with p = 50, 200 predictors. The

results for the case p = 100 are reported in Appendix D.2. The latter also reports examples

of the simulated trajectories for each of the parameters discussed in the results.

We implement different versions of our dynamic Bernoulli-Gaussian BG model. Hereafter,

BGH is the homoskedastic alternative to BG, and BGS performs smoothing on the posterior

inclusion probabilities as highlighted in Section 2.1. Furthermore, we also consider our main

BG algorithm with fixed hyper-parameters Bξ = 1, 10 for the variance of the latent process

ωjt. We compare our dynamic sparse regression model against a series of established static

sparsity inducing priors, which arguably represent the workhorse in Bayesian inference in

linear regressions. We consider two continuous shrinkage priors, i.e. the normal-gamma

of Griffin and Brown (2010) (BNG) and the horseshoe of Carvalho et al. (2010) (BHS), as

well as the mixture of Gaussians proposed by George and McCulloch (1993) (SSVS) and

EM spike-and-slab of Ročková and George (2014) (EMVS). We follow existing literature,

such as Huber et al. (2021); Bianchi et al. (2022b), and use the signal adaptive variable

selector (SAVS) of Ray and Bhattacharya (2018) as post-processing tool to induce sparsity

in the posterior estimates from the hierarchical shrinkage priors BNG and BHS. To mimic

a time-varying behavior we estimate each model based on a recursive rolling window of

100 observations. Finally, we consider two recent advancements towards dynamic variable

selection in large-scale regressions, such as the dynamic spike-and-slab specification of Koop

and Korobilis (2020) (DVS) and Ročková and McAlinn (2021) (DSS). The latter is estimated

with three different values of the marginal importance weight parameter Θ ∈ {0.1, 0.5, 0.9}.

We compare all models based on both point estimation accuracy and their ability to

identify which predictor is significant in a given time period. Point accuracy is measured

by the mean-squared error (MSE), which represents the squared distance between the true

parameters βjt, t = 1, . . . , n observed at each simulation and its corresponding posterior

estimate β̂jt. As a measure of identification accuracy we quantify the type I vs type II error

in variables selection from the F1-score (see, e.g., Bianchi et al., 2022b). This provides a

direct assessment of the ability to correctly classify a predictor as “active” at time t.

Top panels of Figure 9 report the F1-scores for the time-varying parameter β1t which

follows an AR(1) process with persistence equal to 0.98 and conditional variance equal to

0.1. An example of the simulated trajectory is reported in Figure D.5 in Appendix D.2. With

the partial exception of DSS(1), all models provide an accurate identification of γ1t = 1, ∀t.
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Figure 9: Estimation accuracy for β1t. Top panels report the F1-score for p = 50 (left) and p = 200
(right). Bottom panels report the MSE for p = 50 (left) and p = 200 (right).

Perhaps not surprisingly, when it comes to point estimation, a rolling window approach is

less accurate in modeling the pure dynamics of the time-varying parameter. That is, the

squared estimation error from all static variable selection methods is higher.

Figure 10 shows the point estimation accuracy and the F1-score for the β2:3,t which in-

volves one switch from γ2:3,t = 0 to γ2:3,t = 1. Specifically, the parameter is generated by

dividing the interval in sub-periods [1, n] = [1, t1]∪ [t1 + 1, t1 + t2]∪ ...∪ [t1 + . . .+ tn + 1, n],

where tk ∼ Pois(n/2), so that the expected number of sub-periods is 2, and then randomly

alternate periods where γjt = 0 and γjt = 1. For the intervals where γjt = 1 we generate an

AR(1) process as for β1t. This represents a “structural break” type of scenario in which the

estimation accuracy broadly deteriorates. Nevertheless, our BG, BGS and BGH approaches out-

perform all competing methods. This applies for both p = 50 and p = 200. On the contrary,

the F1-score across the other competing methods substantially deteriorates, particularly for
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F1: dynamic sparsity one switch
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Figure 10: Estimation accuracy for β2:3,t. Top panels report the F1-score for p = 50 (left) and
p = 200 (right). Bottom panels report the MSE for p = 50 (left) and p = 200 (right).

a large-scale regression (p = 200) and static variable selection methods (see top-right panel).

This translates into a visible reduction in the point estimation accuracy, as shown by the

MSE in the bottom panels.

Figure 11 shows the point estimation accuracy and the F1-score for the β4 : 5, t which

involves two switches from γ4:5,t = 0 to γ4:5,t = 1 and vice-versa. Specifically, the parameter is

generated as follows by divide the interval in sub-periods as for β2:3,t, but set tk ∼ Pois(n/4),

so that the expected number of sub-periods is 4, and then randomly alternate periods where

γjt = 0 and γjt = 1. For the intervals where γjt = 1 the process is an AR(1) as for β1t. The

results suggest that a more a volatile dynamics broadly poses extra challenges for parameters

identification. This is particularly detrimental for static variable selection methods estimated

based on a rolling window. For instance, for p = 200, the static and dynamic spike-and-

slab methods SSVS, EMWS, DSS(1) and DSS(5) generate a rather dismal average F1-score of
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F1: dynamic sparsity two switches
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Figure 11: Estimation accuracy for β4 : 5, t. Top panels report the F1-score for p = 50 (left) and
p = 200 (right). Bottom panels report the MSE for p = 50 (left) and p = 200 (right).

0.5. This translates in a visibly higher mean squared error in point estimates, as shown by

the MSE. Nevertheless, our dynamic BG model achieve a visibly more accurate parameter

identification and estimation accuracy, in particular for p = 200 and for BGS.

Next, we consider a short-lived signal with β6:7,t. Specifically, the dynamics of the param-

eter is generated by sampling an interval length ∆i ∼ Pois(n/10) and place it at random on

the timeline such that γjt = 1 in that period, then generate a trajectory for the coefficient

as for β1t. This constitutes a rather extreme case in which a predictor is significant only

for a very short period of time. Figure 12 broadly confirms that shorter signals are more

complicated to extract, particularly for the static variable selection methods, with a median

F1-score of 0.25 for both spike-and-slab priors for both p = 50 and p = 200.

This is because rolling window procedure only tangentially capture sudden changes, and

therefore strongly under-performs in terms of identification. This also holds with p = 200
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F1: low signal
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Figure 12: Estimation accuracy for β6:7,t. Top panels report the F1-score for p = 50 (left) and
p = 200 (right). Bottom panels report the MSE for p = 50 (left) and p = 200 (right).

when we impose a very tight variance to ωjt via Bξ. Overall, our dynamic BGS model ranks

best in terms of accuracy of signal identification. Notably, the poor performance of the

classification does not affect the accuracy of the posterior estimates. This is due to the

short-live nature of the β6:7,t; that is, a large mis-classification for a short period is likely

diluted by a good performance when the parameter is zero. This is confirmed by Figure 13,

which reports the results for β8:p,t = 0, ∀t. Within this setting, there is no signal to identify,

therefore the F1-scores metric is replaced by the classification accuracy (ACC). All models

provide good results in terms of identification and estimation accuracy, with the exception

of DVS for p = 50 and EMVS for p = 200.

Appendix D.2 provides additional results testing two key dimensions of our dynamic

variable selection method: robustness to correlated signals and computational speed. As far

as the robustness to correlation is concerned, Figures 8(b)-8(a) in Section D.3 show that
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ACC: constant at 0
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Figure 13: Estimation accuracy for β8:p,t. Top panels report the F1-score for p = 50 (left) and
p = 200 (right). Bottom panels report the MSE for p = 50 (left) and p = 200 (right).

with the exception of extremely high level of autocorrelation and cross-sectional correlation,

our dynamic variable selection method is reasonably robust. The median F1-score tend to

marginally deteriorate for high level of auto-correlation and/or cross-sectional correlations.

This is more evident in the context of highly correlated, short-lived, predictors. However,

the results suggest that our dynamic BG captures a great deal of sparsity in the dynamics of

the regression coefficients independently on the auto- and/or cross-correlation assumptions.

In addition, Figure D.9 shows that the main advantage of our algorithmic procedure is

that the computational cost of the implementation increases at a lower rate with respect to

DVS and DSS as p increases and the signal p̄ is fixed. For instance, for p = 200, BG provides

posterior inference almost three times faster than DVS and four times faster than DSS, on

average. Such computational efficiency is a direct consequence of the properties outlined

in Section 2.2 and arguably makes our approach particularly suitable in cases in which n
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is moderate and p is large. A series of unreported results, also show that sampling from

the MCMC equivalent (see Section A) would be more than fifteen times more costly than

sampling from our variational Bayes scheme – 71.5 secs for 20,000 draws from the MCMC

vs 4.2 secs for convergence in our VB setting. This is consistent with existing evidence on

the computational advantage of variational inference methods vs MCMC in the context of

linear models (see, e.g., Ray and Szabó, 2022; Chan and Yu, 2022; Bianchi et al., 2022b)

4 Applications in economics and finance

We now investigate the performance of our dynamic BG models within the context of two

common problems in macroeconomics and finance: inflation forecasting based on a large set

of macroeconomic variables (see, e.g., Faust and Wright, 2013) and the predictability of the

equity premium based on characteristic-managed portfolios (see, e.g., Dong et al., 2022).

In both cases it is not uncommon to argue in favor of modeling parameter changes for the

purpose of out-of-sample forecasting (see, e.g., Kalli and Griffin, 2014; Bitto and Frühwirth-

Schnatter, 2019; Huber et al., 2021; Dangl and Halling, 2012; Farmer et al., 2022). For

instance, the conventional wisdom posits that the Philips curve – the relationship between

unemployment and inflation – has changed over time. If so, the regression coefficients loading

on labour market variables when forecasting inflation should be time varying.7 Similarly, it

is commonly thought that the relationship between the risk premium on a given asset – that

is the conditional expected excess return – and sources of systematic risk is not constant

over time (see, e.g., Kelly et al., 2019).

4.1 Inflation forecasting

We retrieve the macroeconomic data from the FRED-QD database of McCracken and Ng

(2020). The variables consists in quarterly data spanning the period 3rd quarter 1967 to

2nd quarter 2022, such that the sample includes oil shocks in 1973 and 1979, mild reces-

sion in 1990, the dot-com bubble and the great recession in 2007-2009, and the covid-19

pandemic since 2020. We focus on forecasting four measures of inflation, namely total

CPI (CPIAUCSL), core CPI (CPILFESL), GDP deflator (GDPCTPI), and PCE deflator

(PCECTPI). The name in parenthesis coincides with the variables’ code in the original

7The necessity of capturing these dynamic trends have been discussed and explored in Stock and Watson
(2007), who point out that forecasting inflation has become harder due to trend cycles and dynamic volatility
processes.
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database. When each of these price series Pt is used as target variable to predict h-quarters

ahead we transform it according to the formula yt+h = (400/h) ln (Pt/Pt−1). The 229 pre-

dictors are transformed according to standard norms in literature (see McCracken and Ng,

2020). The set of predictors also includes the first two lags of the response variable.

In sample analysis. Before discussing the out-of-sample forecasting performance, we first

report the in-sample posterior estimates of both the inclusion probabilities and the regression

coefficients. This exercise is intended to demonstrate that our variational Bayes approach

provides reasonable estimates of trends, volatilities and other parameters. For the sake of

brevity we report the in-sample estimates for h = 1 quarter ahead. Figure 14 reports the

time-varying posterior inclusion probabilities and posterior regression coefficients estimates

µq(βjt) from our dynamic BG model for the CPIAUCSL inflation measure. The results show

that only a handful of variables significantly predict the one-quarter ahead total CPI. This

is consistent with Stock and Watson (2007); Harvey et al. (2007), whereby a great deal of

time-series variation in inflation is simply captured by a time-varying mean.

Not surprisingly, past inflation plays a significant role for the one-quarter ahead growth in

CPI. This is in line with Koop and Korobilis (2012). Also, the posterior estimates show an

interesting intersection between demand and supply factors on inflation; for instance, on the

supply side industrial production (INDPRO) is predominantly positively related to inflation

until 2008/2009. On the demand side, real personal consumption expenditures (PCESVx)

becomes significant since 2000 until the end of 2022. This suggests that the interplay between

demand and supply pressure on inflation is potentially time varying and possibly correlates

with the business cycle dynamics. Finally, the model estimates confirm that monetary policy

tightening exerts a downward pressure on inflation, with the 5-year treasury interest rates

(T5YFFM) negatively correlated with total CPI inflation throughout the sample.

Figure 15 reports the posterior estimates µq(βjt), µq(γjt) from our dynamic BG model for

the PCECTPI inflation measure. Interestingly, there is some overlapping in the dynamics

of inflation predictability between the total CPI and the PCE deflator. For instance, lagged

inflation plays a significant role for both CPIAUCSL and PCECTPI over the first part

of the sample, which coincide with oil crisis in the ’70 and recession in the early ’80s.

Similarly, some variables such as industrial production (INDPRO), 5-year treasury interest

rates (T5YFFM), and producer price index (WPSFD49207) are also overlapping across both

measures of inflation. This suggest that our model is able to pick up some interesting

broad dynamics for the supply- and demand-side predictors for inflation. In Appendix E we
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Figure 14: Time-varying coefficients estimates µq(βjt) and posterior inclusion probabilities for total
CPI (CPIAUCSL).

report the in-sample estimates for both the core CPI (CPILFESL) and the GDP deflator

(GDPCTPI). The results confirm two key features of our dynamic BG model: first, it captures

predictors with some clear economic meaning. This is the case of a short-lived significance

of real consumption expenditures (PCECC96) towards the end of 2020, which potentially

highlights the role of stimulating demand on inflation.

Second, our model provides an alternative view to some of the main theory-based inflation

predictors. For instance, short-term unemployment carries a significant signal to predict in-

flation as measured by the GDP deflator from the great financial crisis towards the end of the

sample the GDP deflator. This evidence in favour of a time-varying Phillips curve, whereby

the theoretical inverse relationship between unemployment and inflation is supported by the

data but only during specific time periods. Figure E.11 in Appendix E corroborates the im-

portance of capturing such dynamics by comparing the strength of the information available

to predict inflation and idiosyncratic volatility; that is, a richer model is needed at times of
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Figure 15: Time-varying coefficients estimates µq(βjt) and posterior inclusion probabilities for PCE
deflator (PCECTPI).

higher uncertainty as proxied by the volatility in the residuals.

Out-of-sample forecasting. For each inflation measure we evaluate the h-quarter ahead

forecasting performance based on both point forecast and density forecast accuracy. We can

divide the competing methods into three groups. The first includes a series of widely used

benchmarks for inflation forecasting, such as the unobserved component model of Stock and

Watson (2007) (UC), an auto-regressive model of order two (AR(2)), and an auto-regressive of

model of order two with time-varying parameters (TVAR(2)) (see, e.g., Koop and Korobilis,

2020). Notice that both UC and TVAR(2) account for stochastic volatility. In addition, we

consider also a static latent factor model with five principal components (F5) as additional

benchmark. Latent factor models also represent a rather successful approach within the

context of high-dimensional regression models (see, e.g., Stock and Watson, 2006).

The second group of models is composed by static variable selection methods estimated

using a 30-year rolling window procedure. This includes two continuous shrinkage priors,

i.e. the normal-gamma prior of Griffin and Brown (2010) (BNG) and the horseshoe prior of
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Carvalho et al. (2010) (BHS), and the variable selection methods of George and McCulloch

(1993) (SSVS), Ročková and George (2014) (EMVS), and Giannone et al. (2021) (GLP). We

follow existing literature, such as Huber et al. (2021); Bianchi et al. (2022b), and use the

signal adaptive variable selector (SAVS) of Ray and Bhattacharya (2018) as post-processing

tool to sparsify the posterior estimates from the hierarchical shrinkage priors BNG and BHS.

Notice that also the AR(2) model is static in nature, and therefore estimated based on the

same 30-year rolling window approach.

The third group of models considers recent advances in dynamic variable selection with

time varying parameters such as Koop and Korobilis (2020) (DVS) and Ročková and McAlinn

(2021) (DSS). Consistent with the simulation exercise in Section 3.2, for the DSS we consider

three different values of the marginal importance weight parameter Θ ∈ {0.1, 0.5, 0.9}. As

far as our dynamic sparse regression is concerned, we test a model with (BG) and without

(BGH) stochastic volatility. We consider a combination of uninformative hyper-parameters

Aν = 0.01, Bν = 0.01, Aη = 0.01, Bη = 0.01, and Aξ = 2, Bξ = 5, where the choice of the

latter is based on the sensitivity analysis in Section 2.2.

We first report the relative mean squared forecasting error computed as RMSFEi =∑T
t=τ e

2
i,t−

∑T
t=τ e

2
bench,t, where τ denotes the beginning of the out-of-sample period, and e2

i,t,

e2
bench,t the forecast errors from a competing model and a benchmark specification, respec-

tively. A value greater than zero indicates a model is under-performing the UC and vice-versa.

The first prediction is generated in 1997Q3. We consider as e2
bench,t the UC model of Stock

and Watson (2007). Figure 16(a) reports the results. Not surprisingly, the UC represents a

tough benchmark for point forecasts across models. The relative mean squared forecasting

error with respect to UC is positive for all static variable selection methods based on rolling

window estimates as well as for DVS and DSS irrespective of the choice of Θ. This holds

across forecasting horizons and inflation measures, although with difference in magnitude.

The gap with respect to UC tend to increase with the forecasting horizon. Nevertheless,

our dynamic BG model outperforms both the benchmark and all of the competing variable

selection strategies across forecasting horizons and most inflation measures. Remarkably,

this also holds in comparison with both AR(2) and TVAR(2); two models which discard any

information about macroeconomic factors.

As for the quality of the density forecasts, Figure 16(b) reports the average log score differ-

ential between a given model i and a benchmark, ALSi = 1
T−τ−1

∑T
t=τ (log(Si,t)− log(Sbench,t)),

where log(Si,t) and log(Sbench,t) represent the log-score of the ith model and the benchmark,
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(a) Mean squared error (b) Log-predictive score

Figure 16: Point and density forecasting. Left panel reports the relative mean squared forecasting
error with respect to the unobserved component benchmark UC. The right panel reports the relative
log-predictive socre with respect to the time-varying AR(2) model with stochastic volatility. The
sample period is from 1967Q3 to 2022Q3. The first prediction is generated in 1997Q3. The scale
on the x-axis is truncated to improve readability.

respectively. We consider log(SAR(2),t) as benchmark since produces the highest log-predictive

score among all of the other methods. Interestingly, a simple TVAR(2) represents a chal-

lenging benchmark to beat when it comes to density forecasting, especially for short-term

forecasts. This is in line with Koop and Korobilis (2020). However, our dynamic BG model

represents the only competitive alternative with respect to the static and dynamic variable

selection methods.

Finally, we investigate if the performance of different models are statistically different

based on a series of pairwise (Diebold and Mariano, 1995) (DM) tests. Figure 17 shows the

results. For a given pairwise comparison, if the null hypothesis H0 : MSEC ≥ MSER –

where MSEC and MSER denote the mean-squared error of the column and row model –, is

not rejected at a 10% level we report 0 (white) in the graph. If the null is rejected we report 1

(blue). For the ease of exposition, we report the results for h = 1, 2 forecasting horizons. The

results for h = 4, 8 are reported in Appendix E. As far as short-term forecasts are concerned
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Figure 17: Diebold-Mariano test for the null hypothesis H0 : MSEC ≥ MSER, where MSEC

and MSER denote the mean-squared error of the column and row model, respectively. If the null
is not rejected at a 10% level we report 0 (white). If the null is rejected we report 1 (blue).

(first row in Figure 17), the pairwise testing results suggest that our dynamic BG model

provides a statistically comparable performance to conventional benchmarks, such as the UC

and the time-varying AR(2) model. Yet, both BG and BGH significantly outperforms all of

the other static and dynamic variable selection strategies which make use of macroeconomic

predictors. This holds across inflation measures. More broadly, the DM tests suggest that if

the final goal is to juxtapose accurate predictions with the understanding of the key drivers

of the inflation’s dynamic, then our dynamic sparse regression modeling framework stands

out against competing strategies.

4.2 Anomalies and the expected returns on the market

We consider the predictive content of a large set characteristic-managed portfolios, or “fac-

tors” for the one-month ahead aggregate stock market returns, expanding on the original
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framework of Dong et al. (2022). As customary in the empirical finance literature, we re-

strict our analysis to value-weighted strategies that can be constructed using the Center for

Research in Security Prices (CRSP) monthly and daily stock files, the Compustat Funda-

mental annual and quarterly files, and the Institutional Broker Estimate (IBES) database.

In addition, we exclude a handful of strategies for which there are missing returns. This

process identifies 149 value-weighted long-short portfolios for which we can collect monthly

returns. For a more detailed description of the portfolio construction we refer to Jensen et al.

(2022).8 The portfolio returns span the period January 1971 to December 2021. The target

variable is the one-month ahead returns on the value-weighted market portfolio in excess of

the 30-day T-bill rate, a proxy for the equity risk premium.

In-sample analysis. We first report the in-sample posterior estimates of both the inclu-

sion probabilities and the regression coefficients. This exercise is intended to inspect the

dynamics and significance of characteristic-based portfolios for the aggregate stock market

returns over time. Figure 18(a) reports the time-varying posterior inclusion probabilities

and posterior regression coefficients estimates µq(βjt) from our dynamic BG model. We re-

port those coefficients for which the posterior probability of inclusion is non-negligible. The

results show that the model size is quite small, that is only few anomalies actually carry

significant predictive power, as indicated by the regression coefficient on the max1 21d and

the turnover 126d portfolios.

The max1 21d anomaly pertains a long-short strategy based on the maximum daily re-

turns over the previous 21 trading trading days (see Bali et al., 2011), while turnover 126d

pertains a long-short portfolio based on stocks the average turnover rate – number of shares

traded as a fraction of the number of shares outstanding – in the previous 126 trading days

as a proxy for liquidity (see Datar et al., 1998). These portfolios are primarily related to

trading frictions. Figure 18(b) reports the posterior estimates of the idiosyncratic volatility

µq(σt) (see Eq.B.24 in Appendix B). Idiosyncratic volatility is counter-cyclical, i.e., higher in

recessions, and partly correlates with the strength of the signals as indicated by the dynamics

of the regression coefficients.

Out-of-sample forecasting. As customary in the empirical asset pricing literature, we

evaluate the one-month ahead forecasting performance based on both point forecast and

8Data on the 153 set of characteristic-based portfolios can be found at https://jkpfactors.com. We
thank Bryan Kelly for making these data available.
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Figure 18: Dynamic sparsity and volatility. Left panel reports the time-varying coefficients esti-
mates µq(βjt) and posterior inclusion probabilities. The right panel reports the posterior estimates
of the idiosyncratic volatility µq(σt).

density forecast accuracy. In addition to our BG and BGH models, we consider the same

set of static and dynamic variable selection methods as outlined in Section 4.1. However,

we consider a different set of benchmark methods consistent with the existing literature.

These consist of both equal-weight forecasts from individual regressions (cOLS) – one for

each predictor — as in Rapach et al. (2010), the prediction from the recursively calculated

sample mean (see, e.g., Welch and Goyal, 2008), a one-factor static principal component

regression (F1), and a univariate regression in which the only predictor consists of the cross-

sectional average of the 153 portfolio returns (cPred) (see, e.g., Dong et al., 2022). As for the

prior hyper-parameters of our BG and BGH specifications, we consider the same combination

of uninformative hyper-parameters Aν = 0.01, Bν = 0.01, Aη = 0.01, Bη = 0.01, and Aξ =

2, Bξ = 5, as for the inflation forecasting exercise (see Section 2.2). In addition, to allow

for a direct comparison with Welch and Goyal (2008); Dong et al. (2022), we consider an

expanding window approach in which the first 20 years of monthly returns are considered as

burn-in, and forecasts are recursively generated from 1991M01 to 2021M12.

Figure 19(a) reports both the relative mean squared forecasting error and the log-score
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(b) Diebold-Mariano tests

Figure 19: Forecasting performance. Left panel reports the mean squared error and log-predictive
score differentials with respect to a simple recursive sample mean estimate. The scale on the x-axis
is truncated to improve readability. Right panel reports the pairwise Diebold-Mariano tests. The
sample period is from 1971M11 to 2021M12. The first prediction is generated in 1991M01.

differentials calculated as in Section 4.1, where the benchmark is the recursively calculated

sample mean. The latter represents a widely used reference point to measure the extent of

stock returns predictability (see, e.g., Campbell and Thompson, 2008; Fisher et al., 2020).

The main message that transpire from both the point and density forecasts is that our dy-

namic Bernoulli-Gaussian regression strategy outperforms both static and dynamic compet-

ing variable selection strategies. Specifically, our BG model produces a smaller mean squared

forecasting error than the no-predictability benchmark. Among the alternative benchmark

considered, both the simple equal-weight average of individual forecasts cOLS and the cPred

univariate regression performs on par with the recursive mean.

Figure 19(b) reports the results for a Diebold-Mariano (Diebold and Mariano, 1995) tests

similar to Figure 17. Broadly speaking, the DM tests suggest that if the final goal is to

leverage on the time-varying information from anomaly portfolios to the expected returns

on the stock market, then our dynamic sparse regression modeling framework stands out

against both static and dynamic variable selection strategies. Appendix E reports additional

36



results based on the mean absolute error. The results largely confirm the pattern from the

relative mean squared error. Finally, as far as the quality of density forecasts is concerned,

Figure 19(a) shows that our dynamic Bernoulli-Gaussian model with stochastic volatility is

again the only one outperforming the no-predictability benchmark: the log-predictive score

from BG is larger than assuming returns are generated from a normal distribution recursive

sample mean and variance as sufficient statistics.

5 Concluding remarks

We are interested in modeling dynamic sparsity within the context of large-scale linear re-

gression models with time-varying parameters. To this aim, we propose a novel variational

Bayes estimation procedure which builds upon a dynamic Bernoulli-Gaussian model repre-

sentation. We show both theoretically and in simulation that our inference approach concen-

trates the posterior estimates of time-varying regression coefficients so that different subsets

of predictors can be identified over time. A comprehensive simulation study shows that our

variational Bayes approach is as accurate as its MCMC counterpart, and fares favourably

when compared against state-of-the-art static and dynamic variable selection methods. We

evaluate empirically the performance of our model within the context of two common prob-

lems in economic forecasting, that is inflation and stock returns predictability. The empirical

results suggest that a more accurate identification over time of active predictors translates

into substantial out-of-sample gains compared to a variety of benchmark methods. This

highlights the importance of a dynamic approach to variables selection to fully capture the

extent of both inflation and stock returns predictability.
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Supplementary appendix for:

Dynamic variable selection in
high-dimensional predictive regressions

This appendix provide the derivation of the optimal densities used in our semi-parametric

variational Bayes algorithm. The derivations concern the optimal variational densities for all

model parameters. In addition, we provide formal proofs of the theoretical properties of the

algorithm outlined in Section 2.2. Finally, we provide additional simulation and empirical

results which have not been included in the main text for the sake of brevity.

A An equivalent MCMC sampling scheme

In this section we provide the full conditional distributions for each involved parameter.

The latter enables the implementation of a Gibbs-sampling algorithm (see Algorithm 3) and

constitutes the starting point to derive the variational densities in Appendix B. However, the

MCMC implementation lacks of two important properties. First, it is not possible to smooth

the posterior inclusion probabilities using the strategy in Proposition 2.6. Second, perhaps

more important, the results described in Section 2.2 are no more valid, and therefore an

efficient version of the MCMC that drops the unimportant variables on-line is not available.

Full conditional of p(σ2|rest). Recall that the prior assumption on σ2 is σ2 ∼ IGa(Aσ, Bσ).

The full conditional distribution of σ2 given the rest p(σ2|rest) ∝ p(y|σ2,b,γ)p(σ2) is pro-

portional to:

log p(σ2|rest) ∝ −n
2

log σ2 − 1

2σ2
ε′ε− (Aσ + 1) log σ2 − Bσ

σ2
, (A.1)

with ε = y −
∑p

j=1 XjΓjbj, where Xk and Γk are diagonal matrices with elements xkt−1

and γkt respectively. Therefore, the full conditional distribution of variance σ2 is an inverse-

gamma σ2|rest ∼ IG
(
Aσ + n

2
, Bσ + 1

2
ε′ε
)
.

Sampling h. In order to get posterior samples from p(h|y), we exploit the methodology

described in Kastner and Frühwirth-Schnatter (2014) where the data are transformed as

εt = yt−
∑p

j=1 xjt−1γjtbjt, for t = 1, . . . , n. The latter is implemented in the stochvol package

in R (Kastner, 2016).
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Full conditional of p(bj|rest). Let the prior distribution on bj be bj ∼ Nn+1(0, η2
jQ
−1).

The full conditional distribution of bj given the rest p(bj|rest) ∝ p(y|σ2,b,γ)p(bj|η2
j ) is

proportional to:

log p(bj|rest) ∝ −1

2

(
y −

p∑
k=1

XkΓkbk

)′
H

(
y −

p∑
k=1

XkΓkbk

)
− 1

2
µq(1/η2j )b

′
jQbj

where H, Xk, and Γk are diagonal matrices with elements 1/σ2
t , xkt−1, and γkt for t = 1, . . . , n,

respectively. Define ε−j = y −
∑p

k=1,k 6=j XkΓkbk, then

log p(bj|rest) ∝ −1

2
(ε−j −XjΓjbj)

′H (ε−j −XjΓjbj)−
1

2
µq(1/η2j )b

′
jQbj

∝ −1

2

(
b′jΓjXjHXjΓjbj − 2b′jΓjXjHε−j

)
− 1

2
µq(1/η2j )b

′
jQbj

∝ −1

2

(
b′j(ΓjXjHXjΓj + 1/η2

jQ)bj − 2b′jΓjXjHε−j
)
.

(A.2)

Therefore, the full conditional distribution of bj is a multivariate Gaussian distribution

bj|rest ∼ Nn+1

(
µbj |rest,Σbj |rest

)
, with variance-covariance Σbj |rest = (ΓjXjHXjΓj+1/η2

jQ)−1

and mean µbj |rest = (ΓjXjHXjΓj + 1/η2
jQ)−1ΓjXjHε−j.

Full conditional of p(γjt|rest). Recall that the prior assumption on γjt is γjt ∼ Bern(expit(ωjt)).

The full conditional distribution of γjt, namely p(γjt|rest) ∝ p(y|σ2,b,γ)p(γjt|ωjt) is pro-

portional to:

log p(γjt|rest) ∝ − 1

2σ2
t

(
yt −

p∑
k=1

γktbktxkt−1

)2

+ γjtωjt

∝ − 1

2σ2
t

(γ2
jtb

2
jtx

2
jt−1 − 2γjtbjtxjt−1ε−j,t) + γjtωjt (A.3)

∝ γjt

{
ωjt −

1

2σ2
t

(b2
jtx

2
jt−1 − 2bjtxjt−1ε−j,t)

}
.

Therefore, the full conditional distribution of the indicator variable γjt is a Bernoulli distri-

bution γjt|rest ∼ Bern
(

expit
{
ωjt − 1

2σ2
t
(b2
jtx

2
jt−1 − 2bjtxjt−1ε−j,t)

})
.

Full conditional of p(ωj|rest). Let the prior distribution on ωj be ωj ∼ Nn+1(0, ξ2
jQ
−1).

The full conditional distribution p(ωj|rest) ∝ [
∏n

t=1 p(γjt|ωjt, zjt)p(zjt|ωjt)] p(ωj|ξ2
j ) is pro-
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portional to:

log p(ωj|rest) ∝ ω′j(γj − 1/2ιn)− 1

2
ω′jDiag(zj)ωj −

1

2ξ2
j

ω′jQωj

∝ −1

2

(
ω′j(Diag(zj) + 1/ξ2

jQ)ωj − 2ω′j(γj − 1/2ιn)
)
. (A.4)

Therefore, the full conditional distribution of ωj is a multivariate Gaussian distribution

ωj|rest ∼ Nn+1

(
µωj |rest,Σωj |rest

)
, with variance-covariance Σωj |rest = (Diag(zj) + 1/ξ2

jQ)−1

and mean µωj |rest = (Diag(zj) + 1/ξ2
jQ)−1(γj − 1/2ιn).

Full conditional of p(zjt|rest). Recall the Polya-Gamma representation in Eq.(7). Then,

the full conditional distribution of zjt, namely p(zjt|rest) ∝ p(γjt|zjt, ωjt)p(zjt|ωjt) is propor-

tional to:

log p(zjt|rest) ∝ −zjtω2
jt + log p(zjt), (A.5)

where p(zjt) is the density function of a Polya-Gamma random variable PG(1, 0). Hence,

zjt|rest ∼ PG(1, ω2
jt).

Full conditional of p(η2
j |rest). Assume that a prior η2

j ∼ IGa(Aη, Bη). Then, the full

conditional distribution of η2
j given the rest p(η2

j |rest) ∝ p(bj|η2
j )p(η

2
j ) is proportional to:

p(η2
j |rest) ∝ −n+ 1

2
log η2

j −
1

2η2
j

b′jQbj − (Aη + 1) log η2
j −

Bη

η2
j

∝ −(Aη +
n+ 1

2
+ 1) log η2

j −
1

η2
j

(
Bη +

1

2
b′jQbj

)
. (A.6)

Therefore, the full conditional distribution of the conditional variance η2
j is an inverse-gamma

η2
j |rest ∼ IG

(
Aη + n+1

2
, Bη + 1

2
b′jQbj

)
.

Full conditional of p(ξ2
j |rest). Recall that a priori ξ2

j ∼ IGa(Aξ, Bξ). The full conditional

distribution of ξ2
j given the rest p(ξ2

j |rest) ∝ p(ωj|ξ2
j )p(ξ

2
j ) is proportional to:

p(ξ2
j |rest) ∝ −n+ 1

2
log ξ2

j −
1

2ξ2
j

ω′jQωj − (Aξ + 1) log ξ2
j −

Bξ

ξ2
j

∝ −(Aξ +
n+ 1

2
+ 1) log ξ2

j −
1

ξ2
j

(
Bξ +

1

2
ω′jQωj

)
. (A.7)
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Algorithm 3: Gibbs-sampling scheme for dynamic sparse regression models.

Initialize: ϑ(0), ndraws, Aν , Bν , Aη, Bη, Aξ, Bξ

for r = 1, . . . , ndraws do
for j = 1, . . . , p do

Compute Σbj |rest = (Γ
(r−1)
j XjH

(r−1)XjΓ
(r−1)
j + 1/η

2(r−1)
j Q)−1;

Compute µbj |rest = Σbj |restΓ
(r−1)
j XjH

(r−1)ε
(r−1)
−j ;

Sample b
(r)
j ∼ Nn+1

(
µbj |rest,Σbj |rest

)
;

Sample η
2(r)
j ∼ IG

(
Aη + n+1

2
, Bη + 1

2
b
′(r)
j Qb

(r)
j

)
;

Compute Σωj |rest = (Diag(z
(r−1)
j ) + 1/ξ

2(r−1)
j Q)−1;

Compute µωj |rest = Σωj |rest(γ
(r−1)
j − 1/2ιn);

Sample ω
(r)
j ∼ Nn+1

(
µωj |rest,Σωj |rest

)
;

Sample ξ
2(r)
j ∼ IG

(
Aξ + n+1

2
, Bξ + 1

2
ω
′(r)
j Qω

(r)
j

)
;

for t = 1, . . . , n do

Sample z
(r)
jt ∼ PG(1, ω

2(r)
jt );

Sample γ
(r)
jt ∼ Bern

(
expit

{
ω

(r)
jt − 1

2σ
2(r−1)
t

(b
2(r)
jt x2

jt − 2b
(r)
jt xjtε

(r)
−j,t)

})
;

end

end

Sample h with ε
(r)
t = yt −

∑p
j=1 xjtγ

(r)
jt b

(r)
jt (heteroskedastic);

Sample ν2(r) ∼ IG
(
Aν + n+1

2
, Bν + 1

2
h
′(r)
j Qh

(r)
j

)
;

Sample σ2(r) ∼ IG
(
Aσ + n

2
, Bσ + 1

2
ε′(r)ε(r)

)
(homoskedastic);

end

Hence, the full conditional distribution of the conditional variance ξ2
j is an inverse-gamma

ξ2
j |rest ∼ IG

(
Aξ + n+1

2
, Bξ + 1

2
ω′jQωj

)
.

Full conditional of p(ν2|rest). Assume that a priori ν2 ∼ IGa(Aν , Bν). The full condi-

tional distribution of ν2 given the rest p(ν2|rest) ∝ p(h|ν2)p(ν2) is proportional to:

p(ν2|rest) ∝ −n+ 1

2
log ν2 − 1

2ν2
h′jQhj − (Aν + 1) log ν2 − Bν

ν2

∝ −(Aν +
n+ 1

2
+ 1) log ν2 − 1

ν2

(
Bν +

1

2
h′jQhj

)
. (A.8)

Therefore, the full conditional distribution of the conditional variance ν2 is an inverse-gamma

ν2|rest ∼ IG
(
Aν + n+1

2
, Bν + 1

2
h′jQhj

)
.

44



B Optimal variational densities

Proposition B.1. The optimal variational density for the time-varying regression parame-

ters bj = (bj0, bj1, . . . , bjn)′ is a multivariate Gaussian q∗(bj) ≡ Nn+1(µq(bj),Σq(bj)), where:

Σq(bj) = (Dj
2 + µq(1/η2j )Q)−1, µq(bj) = Σq(bj)Djµq(ε−j), (B.1)

where Dj and D2
j are diagonal matrices with elements [Dj]t = µq(1/σ2

t )µq(γjt)xjt−1 and [Dj]
2
t =

µq(1/σ2
t )µq(γjt)x

2
jt−1, respectively. Moreover, µq(ε−j) is the vector of partial residuals with ele-

ments µq(ε−jt) = yt −
∑p

k=1,k 6=j xkt−1µq(γkt)µq(bkt).

Proof. The full conditional distribution of bj given the rest p(bj|rest) is defined in Eq.(A.2).

According to Ormerod and Wand (2010), the optimal variational density is given by:

log q∗(bj) ∝ E−bj [log p(bj|rest)]

∝ −1

2

(
b′jD

2
jbj − 2b′jDjµq(ε−j)

)
− 1

2
µq(1/η2j )b

′
jQbj

∝ −1

2

(
b′j(D

2
j + µq(1/η2j )Q)bj − 2b′jDjµq(ε−j)

)
,

(B.2)

where Dm
j is a diagonal matrix with elements equal to

[Dm
j ]t = E−bj [γjtxmjt−1/σ

2
t )] = µq(1/σ2

t )µq(γjt)x
m
jt−1,

and µq(ε−j) = (0, µq(ε−j,1), . . . , µq(ε−j,n)) with

µq(ε−j,t) = E−bj

[
y −

p∑
k=1,k 6=j

XkΓkbk

]
= yt −

p∑
k=1,k 6=j

xkt−1µq(γkt)µq(bkt).

Equation B.2 represents the kernel of a multivariate Gaussian distribution as in B.1.

Proposition B.2. The optimal variational density for the parameters γjt is a Bernoulli ran-

dom variable q∗(γjt) ≡ Bern(expit(ωq(γjt))), where expit(·) is the inverse of the logit function

and ωq(γjt) = µq(ωjt) − 1
2
µq(1/σ2

t )(x
2
jt−1Eq[b2

jt]− 2µq(bjt)xjt−1µq(ε−jt)).

Proof. The full conditional distribution of γjt ∼ p(γjt|rest) is derived in Eq.(A.3). Thus, the
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optimal variational density is given by:

log q∗(γjt) ∝ E−γjt [log p(γjt|rest)]

∝ γjt{µq(ωjt) −
1

2
µq(1/σ2)(x

2
jt−1Eq[b2

jt]− 2µq(bjt)xjt−1µq(ε−j,t))},
(B.3)

where Eq[b2
jt] = µ2

q(bjt)
+ σ2

q(bjt)
. Eq.B.3 is the kernel of a Bernoulli distribution as in B.2.

Proposition B.3. The optimal variational density for the parameter ωj is a multivariate

Gaussian q∗(ωj) ≡ Nn+1(µq(ωj),Σq(ωj)), where:

Σq(ωj) = (Diag(0,µq(zj)) + µq(1/ξ2j )Q)−1, µq(ωj) = Σq(ωj)(0,µ
ᵀ
q(γ̄j)

)ᵀ, (B.4)

with µq(γ̄j) = µq(γj) − 1/2ιn.

Proof. The full conditional distribution of ωj is defined in Eq.(A.4). Then, the optimal

variational density is given by:

log q∗(ωj) ∝ E−ωj [log p(ωj|rest)]

∝ ω′jµq(γ̄j) −
1

2
ω′jDiag(µq(zj))ωj −

1

2
µq(1/ξ2j )ω

′
jQωj

∝ −1

2

(
ω′j(Diag(0,µq(zj)) + µq(1/ξ2j )Q)ωj − 2ω′j(0,µ

′
q(γ̄j)

)′
)
,

(B.5)

where µq(γ̄j) = µq(γj) − 1/2ιn. Equation B.5 is the kernel of a multivariate Gaussian distri-

bution as in 2.3.

Proposition B.4. Let q∗(bj) and q∗(γjt) be the optimal variational densities presented in

Propositions 2.1 and 2.2. Define βj = Γjbj, where the matrix Γj = diag(1, γj1, . . . , γjn). The

optimal variational density of βj is given by a mixture of multivariate Gaussian distributions:

q∗(βj) =
∑
s∈S

ws Nn+1(Dsµq(bj),D
1/2
s Σq(bj)D

1/2
s ), (B.6)

where S is a sequence of {0, 1} of length n with cardinality |S| = 2n, the diagonal matrix

Ds = diag(1, s1, . . . , sn), and mixing weights:

ws =
n∏
t=1

µstq(γjt)(1− µq(γjt))
1−st , (B.7)

where s = (s1, . . . , st, . . . , sn) ∈ S is an element in S. Moreover, the mean and variance can
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be computed analytically:

µq(βj) = µq(Γj)µq(bj), (B.8)

Σq(βj) = (µq(γj)µ
′
q(γj)

+ Wµq(γj)
)�Σq(bj) + Wµq(γj)

� µq(bj)µ
′
q(bj)

, (B.9)

where Wµq(γj)
is a diagonal matrix with elements

(
1, {µq(γjt)(1− µq(γjt))}nt=1

)
.

Proof. Recall that under the mean-field variational Bayes setting we have that

q(bj, γj1, . . . , γjn) = q(bj)
n∏
t=1

q(γjt). (B.10)

For the sake of simplicity, in what follows we drop the index j and define γ = diag(Γ)

the diagonal elements in Γ. Consider the following transformation of random variables

(γ = γ,β = Γb), so that b = Γ−1β. Hence it follows that:

J =

[
∇γ(γ1, . . . , γn)′ ∇b(γ1, . . . , γn)′

∇γΓ
−1β ∇βΓ−1β

]
=

[
In 0

∇γΓ
−1β Γ−1

]
, (B.11)

and so |J| = |Γ−1|. The joint distribution of (β, γ1, . . . , γn) can be written as:

q(β, γ1, . . . , γn) = |Γ−1|q(Γ−1β)
n∏
t=1

q(γjt) = f(β|γ1, . . . , γn)f(γ1, . . . , γn), (B.12)

where q are then replaced by the optimal elements q∗. For the conditional distribution in

(B.12), we have that:

f(β|γ) = |Γ−1|φn+1(Γ−1β|µq(b),Σq(b)), (B.13)

where φn+1(·|µ,Σ) is the density function of a multivariate Gaussian. After some compu-

tations we have that f(β|γ) = φn+1(β|µ(γ),Σ(γ)) with mean vector µ(γ) = Γµq(b) and

covariance matrix Σ(γ) = Γ1/2Σq(b)Γ
1/2. The marginal for β can be found as:

q(β) =
∑
s∈S

φn+1(β|µ(γ = s),Σ(γ = s))
n∏
t=1

q(γt = st), (B.14)

where S denotes the domain of γ = (1, γ1, . . . , γn), and it is composed by all the possible

sequences of {0, 1} of length n, since the first element is fixed to be 1. The latter set has

cardinality |S| = 2n. The distributional result concerning β is therefore proven.
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Now compute the marginal mean recall that Ex(x) = Ey(Ex(x|y)). Hence Eq(β) =

Eγ(Γµq(b)) = µq(Γ)µq(b). The marginal variance-covariance matrix is then computed as

Varq(β) = E(ββ′)− E(β)E(β)′ where

E(ββ′) = E(Γb(Γb)′) = E(Γbb′Γ) = E(γγ ′ � bb′) = E(γγ ′)� E(bb′)

= (µq(γ)µ
′
q(γ) + Wµq(γ))� (µq(b)µ

′
q(b) + Σq(b)), (B.15)

where Wµq(γ) is a diagonal matrix with elements (1, {µq(γt)(1−µq(γt))}nt=1). Plug-in the latter

in the formula for Varq(β) and recall the analytical form of the mean E(β). After some

simplification we end up with Σq(β) = (µq(γ)µ
′
q(γ) + Wµq(γ)) � Σq(b) + Wµq(γ) � µq(b)µ

′
q(b),

which concludes the proof.

Proposition B.5. Let ε2 = ε � ε with components [ε2]t = (yt − βtxt−1)2. Assuming a

Gaussian Markov Random Field (GMRF) approximation q∗(h) ≡ Nn+1(µq(h),Ω
−1
q(h)), with

mean vector µq(h) and variance-covariance matrix Σq(h) = Ω−1
q(h), an iterative algorithm can

be set as:

Σnew
q(h) =

[
∇2
µq(h),µq(h)

S(µoldq(h),Σ
old
q(h))

]−1

(B.16)

µnewq(h) = µoldq(h) + Σnew
q(h)∇µq(h)S(µoldq(h),Σ

old
q(h)). (B.17)

where

∇µq(h)S(µoldq(h),Σ
old
q(h)) = −ιn

2
+

1

2
Eq(ε2)� e−µ

old
q(h)

+σ2 old
q(h)

/2 − µq(1/ν2)Qµ
old
q(h), (B.18)

and

∇2
µq(h),µq(h)

S(µoldq(h),Σ
old
q(h)) = −1

2
Diag(Eq(ε2)� e−µ

old
q(h)

+σ2 old
q(h)

/2)− µq(1/ν2)Q, (B.19)

denote the first and second derivative of S(µq(h),Σq(h)) with respect to µq(h) and evaluated

at (µoldq(h),Σ
old
q(h)), and σ2

q(h) = diag(Σq(h)).

Proof. The updating scheme follows the algorithm provided in Rohde and Wand (2016) for

Gaussian variational approximations. The function S is called non-entropy function and it
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is given by S(µq(h),Σq(h)) = Eq(log p(y,ϑ)):

S(µq(h),Σq(h)) = −ι
′
n

2
µq(h) −

1

2
E′q(ε2)e−µq(h)+σ

2
q(h)

/2

− 1

2
µq(1/ν2)

(
µ′q(h)Qµq(h) + tr

{
Σq(h)Q

})
,

(B.20)

where ε2 = ε� ε with components [ε2]t = (yt − βtxt)2, and σ2
q(h) = diag(Σq(h)). Then, the

first derivative with respect to the variational mean vector µq(h) is given by

∇µq(h)S(µq(h),Σq(h)) = −ιn
2

+
1

2
Eq(ε2)� e−µq(h)+σ

2
q(h)

/2 − µq(1/ν2)Qµq(h). (B.21)

Moreover, derive ∇µq(h)S(µq(h),Σq(h)) again with respect to µq(h):

∇2
µq(h),µq(h)

S(µq(h),Σq(h)) = −1

2
Diag(Eq(ε2)� e−µq(h)+σ

2
q(h)

/2)− µq(1/ν2)Q. (B.22)

Remark B.1. Under the multivariate Gaussian approximation of q(h) with mean vector

µq(h) and covariance matrix Σq(h), the optimal density of the vector σ2 = exp{h}, namely

q∗(σ2), is a multivariate log-normal distribution such that:

Eq[σ2
t ] = exp{µq(ht) + 1/2σ2

q(ht)}, (B.23)

Eq[1/σ2
t ] = exp{−µq(ht) + 1/2σ2

q(ht)}, (B.24)

Varq[σ
2
t ] = exp{2µq(ht) + σ2

q(ht)}(exp{σ2
q(ht)} − 1), (B.25)

Covq[σ
2
t , σ

2
t+1] = exp{µq(ht) + µq(ht+1) + 1/2(σ2

q(ht) + σ2
q(ht+1))}(exp{Covq[ht, ht+1]} − 1).

Proposition B.6. The optimal variational density for the homoskedastic variance σ2 is an

inverse-gamma q∗(σ2) ≡ IG(Aq(σ2), Bq(σ2)) where:

Aq(σ2) = Aσ +
n

2
, Bq(σ2) = Bσ +

1

2
Eq [ε′ε] , (B.26)
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where:

E−σ2 [ε′ε] = y′y − 2

(
p∑
j=1

Xjµq(Γj)µq(bj)

)′
y +

p∑
j=1

tr
{(
µq(bj)µ

′
q(bj)

+ Σq(bj)

)
µq(Γj)X

2
j

}
+

p∑
j=1

µ′q(bj)µq(Γj)Xj

p∑
k=1,k 6=j

Xkµq(Γk)µq(bk).

Proof. The full conditional distribution of σ2 given the rest p(σ2|rest) is derived in Eq.(A.1).

Thus, the optimal variational density is given by:

log q∗(σ2) ∝ E−σ2 [log p(σ2|rest)]

∝ −(Aσ +
n

2
+ 1) log σ2 − 1

σ2

{
Bσ +

1

2
E−σ2 [ε′ε]

}
,

(B.27)

where:

E−σ2 [ε′ε] = E−σ2

[(
y −

p∑
j=1

XjΓjbj

)′(
y −

p∑
j=1

XjΓjbj

)]
= y′y − 2

(
p∑
j=1

E−σ2 [XjΓjbj]

)′
y

+

p∑
j=1

E−σ2

[
b′jΓjXjXjΓjbj + b′jΓjXj

p∑
k=1,k 6=j

XkΓkbk

]

= y′y − 2

(
p∑
j=1

Xjµq(Γj)µq(bj)

)′
y +

p∑
j=1

tr
{
Ebj

[
bjb

′
j

]
µq(Γj)X

2
j

}
+

p∑
j=1

µ′q(bj)µq(Γj)Xj

p∑
k=1,k 6=j

Xkµq(Γk)µq(bk)

= y′y − 2

(
p∑
j=1

Xjµq(Γj)µq(bj)

)′
y +

p∑
j=1

tr
{(
µq(bj)µ

′
q(bj)

+ Σq(bj)

)
µq(Γj)X

2
j

}
+

p∑
j=1

µ′q(bj)µq(Γj)Xj

p∑
k=1,k 6=j

Xkµq(Γk)µq(bk).

Equation B.27 represents the kernel of a Inverse-Gamma distribution as in B.6.

Proposition B.7. The optimal variational density for the zjt parameters is a Polya-Gamma
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q∗(zjt) ≡ PG(1,
√
µq(ω2

jt)
) and define

µq(zjt) = Eq [zjt] =
1

2

1√
µq(ω2

jt)

tanh

(√
µq(ω2

jt)

2

)
(B.28)

Proof. The full conditional distribution of zjt given the rest is proportional to Eq.(A.5).

Then the optimal variational density is such that

log q∗(zjt) ∝ −zjtµq(ω2
jt)

+ log p(zjt). (B.29)

Equation B.29 represents the kernel of a Polya-Gamma distribution as in B.7.

Proposition B.8. The optimal variational density for the variance parameter η2
j is an

inverse-gamma distribution q∗(η2
j ) ≡ IG(Aq(η2j ), Bq(η2j )), where:

Aq(η2j ) = Aη +
n+ 1

2
, Bq(η2j ) = Bη +

1

2

(
µ′q(bj)Qµq(bj) + tr

{
Σq(bj)Q

})
. (B.30)

Proof. The full conditional distribution of η2
j given the rest p(η2

j |rest) is described in Eq.(A.6).

Then, the optimal variational density is given by:

log q∗(η2
j ) ∝ E−η2j [log p(η2

j |rest)]

∝ −n+ 1

2
log η2

j −
1

2η2
j

E−η2j
[
b′jQbj

]
− (Aη + 1) log η2

j −
Bη

η2
j

∝ −
(n

2
+ Aη + 1

)
log η2

j −
1

η2
j

(
Bη +

1

2

(
µ′q(bj)Qµq(bj) + tr

{
Σq(bj)Q

}))
.

(B.31)

Equation B.31 represents the kernel of an Inverse-Gaussian distribution as in B.8.

Proposition B.9. The optimal variational density for the variance parameter ξ2
j is an

inverse-gamma distribution q∗(ξ2
j ) ≡ IG(Aq(ξ2j ), Bq(ξ2j )), where:

Aq(ξ2j ) = Aξ +
n+ 1

2
, Bq(ξ2j ) = Bξ +

1

2

(
µ′q(ωj)Qµq(ωj) + tr

{
Σq(ωj)Q

})
. (B.32)

Proof. The full conditional distribution of ξ2
j given the rest p(ξ2

j |rest) is described in Eq.(A.7).
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Thus, the optimal variational density is given by:

log q∗(ξ2
j ) ∝ E−ξ2j [log p(ξ2

j |rest)]

∝ −n+ 1

2
log ξ2

j −
1

2ξ2
j

E−ξ2j
[
ω′jQωj

]
− (Aξ + 1) log ξ2

j −
Bξ

ξ2
j

∝ −(
n

2
+ Aξ + 1) log ξ2

j −
1

ξ2
j

(
Bξ +

1

2

(
µ′q(ωj)Qµq(ωj) + tr

{
Σq(ωj)Q

}))
.

(B.33)

Equation B.33 represents the kernel of an Inverse-Gaussian distribution as in B.9.

Proposition B.10. The optimal variational density for the variance parameter ν2 is an

inverse-gamma distribution q∗(ν2) ≡ IG(Aq(ν2), Bq(ν2)), where:

Aq(ν2) = Aν +
n+ 1

2
, Bq(ν2) = Bν +

1

2

(
µ′q(h)Qµq(h) + tr

{
Σq(h)Q

})
. (B.34)

Proof. The full conditional distribution of ν2 given the rest p(ν2|rest) is described in Eq.(A.8).

Thus, the optimal variational density is given by:

log q∗(ν2) ∝ E−ν2 [log p(ν2|rest)]

∝ −n+ 1

2
log ν2 − 1

2ν2
E−ν2 [h′Qh]− (Aν + 1) log ν2 − Bν

ν2

∝ −
(n

2
+ Aν + 1

)
log ν2 − 1

ν2

(
Bν +

1

2

(
µ′q(h)Qµq(h) + tr

{
Σq(h)Q

}))
.

(B.35)

Equation B.35 represents the kernel of an Inverse-Gaussian distribution as in B.10.

B.1 Smoothing the sparsity dynamics

Proposition B.11. A smooth estimate for the trajectory of the inclusion probabilities can

be achieved assuming q̃(γj) =
∏n

t=1 q̃(γjt) such that q̃(γjt) ≡ Bern(expit(w′tfj)) with con-

straints on the mean. Therefore, the expectation of the joint vector γj = (γj1, . . . , γjn)′ is

equal to Eq̃(γj) = Wfj, where W is a n × k B-spline basis matrix. The optimal value

of fj is the solution of the optimization problem f̂j = arg maxfj∈Rk ψ(fj) where ψ(fj) =∑n
t=1

[
(ωq(γjt) −w′tfj)expit(w′tfj) + log(1 + exp(w′tfj))

]
, such that the gradient is equal to

∇fψ(f) =
∑n

t=1 wt(ωq(γjt) −w′tf)
expit(w′tf)

1+exp(w′tf)
.

Proof. To find the best q̃ that approximates q, minimize the Kullback-Leibler divergence

KL (q̃ || q). This corresponds to maximize Eq̃[log q] − Eq̃[log q̃] over the parameters of the
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approximating density q̃. In our case we obtain:

f̂ = arg max
f∈Rk

ψ(f) = arg max
f∈Rk

{
Eq̃[log q(γj)]− Eq̃[log q̃(γ)]

}
= arg max

f∈Rk

n∑
t=1

{Eq̃[log q(γjt)]− Eq̃[log q̃(γjt)]}

and define ψt(f) = Eq̃[log q(γjt)]− Eq̃[log q̃(γjt)]. The first term is equal to:

Eq̃[log q(γjt)] = Eq̃[γjtωq(γjt)] = ωq(γjt)expit(w′tf),

while the second one can be written as:

Eq̃[log q̃(γjt)] = Eq̃[γj,tw′tf − log(1 + exp(w′tf))]

= w′tfexpit(w′tf)− log(1 + exp(w′tf)).

Group together and obtain:

ψt(f) = (ωq(γjt) −w′tf)expit(w′tf) + log(1 + exp(w′tf)).

which defines the t component of the loss function in the Proposition. Now derive ψ(f) with

respect to f :

∇fψ(f) =
∂

∂f
ψ(f) =

n∑
t=1

∂

∂f
ψt(f).

Compute the latter and get:

∂

∂f
ψt(f) = −wtexpit(w′tf) + wt(ωq(γjt) −w′tf)

expit(w′tf)

1 + exp(w′tf)
+ wtexpit(w′tf)

= wt(ωq(γjt) −w′tf)
expit(w′tf)

1 + exp(w′tf)
,

which completes the proof.

Alternative smoothing assumptions. Figure B.1 depicts the form of W when B-spline

and Daubechies wavelets are used. The form of W in case of B-spline basis functions (top)

and wavelet basis functions (bottom). Right panels correspond to columns of the matrix
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W. The B-spline basis functions is a sequence of piecewise polynomial functions of a given

degree, in this case dg = 3. The locations of the pieces are determined by the knots, here

we assume kn = 20 equally spaced knots. The functions that compose the wavelet basis

matrix W are constructed over equally spaced grids on [0, n] of length R, where R is called

resolution and it is equal to 2l−1, where l defines the level, and as a result the degree of

smoothness. The number of functions at level l is then equal to R and they are defined as

dilatation and/or shift of a more general mother function.

(a) B-spline basis with kn = 20 and dg = 3 (b) Daubechies wavelet basis matrix

Figure B.1: Smoothing time-varying parameters. The columns of the matrix W in case of B-spline
basis functions (left panel) or wavelet basis functions (right panel).

C Proofs of the theoretical properties

Before discussing the theoretical properties of our algorithmic procedure, we need to provide

definitions and lemmas which are instrumental for the proof.

Definition C.1. A is a Z-matrix if its off-diagonal elements satisfy ai,j ≤ 0, for i 6= j.

Definition C.2. A is a strictly diagonally dominant (SDD) matrix if, for each i row of A,

|ai,i| >
∑

j 6=i |ai,j|.

Corollary C.1. If a matrix A is SDD and all its diagonal elements ai,i are positive, then

the real parts of its eigenvalues are positive.
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Definition C.3. A matrix A is said to be an M-matrix if it is a strictly diagonally dominant

Z-matrix and all its diagonal elements ai,i are positive.

Corollary C.2. If a matrix A is an M-matrix, then it belongs to inverse-positive matrices,

i.e all elements of the inverse are positive [A−1]i,j ≥ 0, for all (i, j).

Lemma C.1. The matrix Q−1 is a positive matrix, i.e [Q−1]i,j ≥ 0.

Proof. Follows from the tridiagonal form of Q with q1,1 = 1 + 1/k0, and k0 < +∞.

Lemma C.2. The matrix Σq(ωj) is a positive matrix, i.e [Σq(ωj)]i,j ≥ 0.

Proof. Recall that

Σq(ωj) = W−1 =
(
Diag (0,Eq [zj]) + µq(1/ξ2j )Q

)−1

, (C.1)

is tridiagonal, where Eq [zjt] > 0 and µq(1/ξ2j ) > 0. Notice that W has off-diagonal elements

equal to −µq(1/ξ2j ) < 0 in the first sub/over-diagonal and 0 elsewhere and therefore it is a

Z-matrix. Moreover, wt,t > 0 for all t and:

w1,1 = (1 + k−1
0 )µq(1/ξ2j ) > µq(1/ξ2j ) = |w1,2| (C.2)

wt,t = 2µq(1/ξ2j ) + Eq [zjt] > 2µq(1/ξ2j ) = |wt,t−1|+ |wt,t+1|, t = 2, . . . , n (C.3)

wn+1,n+1 = µq(1/ξ2j ) + Eq [zjn] > µq(1/ξ2j ) = |wn+1,n−1|, (C.4)

thus W is SDD with positive diagonal elements. Hence, by definition C.3 is an M-matrix

and corollary C.2 tells us that its inverse is a positive matrix.

Proposition C.1. Assume that the maximum over time of the inclusion probabilities, for

a given variable j, at the i-th iteration of the algorithm is such that maxt∈{1,...,n} µ
(i)
q(γjt)

= ε,

and ε� 1 is small enough. Moreover, let Σ
(i)
q(ωj)
−Σ

(i−1)
q(ωj)

≥ 0, then:

1. µ
(i+1)
q(γjt)

= expit
{
µ

(i+1)
q(ωjt)

− 1
2
µ

(i+1)

q(1/σ2
t )
x2
jt−1µ

−1(i+1)

q(1/η2j )
qtt +O(ε)

}
, qtt = [Q−1]tt ≥ 0;

2. µ
(i+1)
q(ωjt)

= −1/2
∑n

k=1 stk +O(ε), stk = [Σq(ωj)]tk ≥ 0;

3. µ
(i+1)
q(ωjt)

≤ µ
(i)
q(ωjt)

decreases after each iteration.

Proof. We start proving 1). Consider the update for µ
(i+1)
q(γjt)

:

µ
(i+1)
q(γjt)

= expit
{
µ

(i+1)
q(ωjt)

− 1/2µ
(i+1)

q(1/σ2
t )

(
E(i+1)
q [b2

jt]x
2
jt−1 − 2µ

(i+1)
q(bjt)

xjt−1E(i+1)
q [εjt]

)}
. (C.5)
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Notice that the vector for all times µ
(i+1)
q(bj)

has the following formula:

µ
(i+1)
q(bj)

=
(
µ

(i+1)

q(1/σ2
t )

(D̃2(i)
γj

) + µ
(i)

q(1/η2j )
Q
)−1

µ
(i+1)

q(1/σ2
t )

D̃(i)
γj
µ

(i+1)
q(ε̃−j)

, (C.6)

where D̃γj = Diag((0,µq(γj))� (0,xj)) and D̃2
γj

= Diag((0,µq(γj))� (0,xj � xj)). Notice we

can write each µ
(i+1)
q(γjt)

= αtε, with 0 < αt ≤ 1. Now define α the collection of the αt, and

Aγj = Diag((0,α)� (0,xj)) and A2
γj

= Diag((0,α)� (0,xj � xj)), such that Eq.C.6 can be

written as

µ
(i+1)
q(bj)

=
(
µ

(i+1)

q(1/σ2
t )

(εA2(i)
γj

) + µ
(i)

q(1/η2j )
Q
)−1

µ
(i+1)

q(1/σ2
t )
εA(i)

γj
µ

(i+1)
q(ε̃−j)

, (C.7)

and

lim
ε→0

µ
(i+1)
q(bj)

ε
<∞ =⇒ µ

(i+1)
q(bjt)

= O(ε). (C.8)

Consider now the variance matrix Σ
(i+1)
q(bj)

:

Σ
(i+1)
q(bj)

=
(
µ

(i+1)

q(1/σ2
t )

(εA2(i)
γj

) + µ
(i)

q(1/η2j )
Q
)−1

= f(ε), (C.9)

as a scalar to matrix function f with

f ′(ε) =
(
µ

(i+1)

q(1/σ2
t )

(εA2(i)
γj

) + µ
(i)

q(1/η2j )
Q
)−1 (

µ
(i+1)

q(1/σ2
t )

(A2(i)
γj

)
)(

µ
(i+1)

q(1/σ2
t )

(εA2(i)
γj

) + µ
(i)

q(1/η2j )
Q
)−1

.

Using Taylor expansion in ε = 0 we obtain:

Σ
(i+1)
q(bj)

=
(
µ

(i)

q(1/η2j )
Q
)−1

+ ε
(
µ

(i)

q(1/η2j )
Q
)−1 (

µ
(i+1)

q(1/σ2
t )

(A2(i)
γj

)
)(

µ
(i)

q(1/η2j )
Q
)−1

+ . . .

and therefore each diagonal element is σ
2(i+1)
q(bjt)

=
[
µ

(i)

q(1/η2j )

]−1

qt,t +O(ε) and it follows that

E(i+1)
q [b2

jt] = (µ
(i+1)
q(bjt)

)2 + σ
2(i+1)
q(bjt)

=
[
µ

(i)

q(1/η2j )

]−1

qt,t +O(ε). (C.10)

Put together (C.8) and (C.10) completes the proof. Similarly we prove 2). Recall the

function to jointly update µ
(i+1)
q(ωj)

:

µ
(i+1)
q(ωj)

= Σ
(i+1)
q(ωj)

(
0,µ

(i)′
q(γj)
− 1/2ι′n

)′
, (C.11)
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then the update of the t-th component is:

µ
(i+1)
q(ωjt)

= s′t

(
0,µ

(i)′
q(γj)
− 1/2ι′n

)′
= −1/2s′t (0, ι′n)

′
+ s′t

(
0,µ

(i)′
q(γj)

)′
= −1/2

n∑
k=1

stk +
n∑
k=1

stkµ
(i)
q(γjk), (C.12)

where st denotes the t-th column in Σ
(i+1)
q(ωj)

. Notice that, since µ
(i)
q(γjk) ≤ ε, for all k, we can

write µ
(i)
q(γjk) = αkε, where 0 < αk ≤ 1. If we plug-in the latter in Eq.C.12 we get

µ
(i+1)
q(ωj,t)

= −1/2
n∑
k=1

stk + ε
n∑
k=1

αkstk = −1/2
n∑
k=1

stk +O(ε). (C.13)

To prove the last statement 3), assume that we observe Σ
(i)
q(ωj)
−Σ

(i−1)
q(ωj)

positive matrix. Then

we have that, for ε small:

|µ(i)
q(ωj)
| = 1

2
Σ

(i)
q(ωj)

(0, ι′n)
′ ≥ 1

2
Σ

(i−1)
q(ωj)

(0, ι′n)
′
= |µ(i−1)

q(ωj)
|, (C.14)

and therefore:

E(i)
q (ωjω

′
j) = µ

(i)
q(ωj)

(µ
(i)
q(ωj)

)′ + Σ
(i)
q(ωj)
≥ µ(i−1)

q(ωj)
(µ

(i−1)
q(ωj)

)′ + Σ
(i−1)
q(ωj)

= E(i−1)
q (ωjω

′
j), (C.15)

which means that E(i)
q (ωjω

′
j)− E(i−1)

q (ωjω
′
j) is a positive matrix. Consider now the update

for the variable zjt:

E(i)
q [zjt] =

1

2

1√
E(i)
q (ω2

jt)
tanh(

√
E(i)
q (ω2

jt)

2
) ≤ E(i−1)

q [zjt] , (C.16)

since it is decreasing in E(i)
q (ω2

jt), for all t. And similarly for ξ2
j :

µ
(i)

q(1/ξ2j )
=

Aξ + n+1
2

Bξ + 1
2
tr
{
E(i)
q (ωjω′j)Q

} ≤ µ
(i−1)

q(1/ξ2j )
, (C.17)

since it is decreasing in E(i)
q (ωjω

′
j) and E(i)

q (ωjω
′
j)− E(i−1)

q (ωjω
′
j) is a positive matrix. The
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next update of Σq(ωj) is equal to:

Σ
(i+1)
q(ωj)

=
(
Diag

(
0,E(i)

q [zj]
)

+ µ
(i)

q(1/ξ2j )
Q
)−1

, (C.18)

which increases as both E(i)
q [zj] and µ

(i)

q(1/ξ2j )
decreases. Hence also Σ

(i+1)
q(ωj)
−Σ

(i)
q(ωj)

is a positive

matrix and therefore, for ε small:

|µ(i+1)
q(ωj)
| ≥ |µ(i)

q(ωj)
|, (C.19)

and from statement 2) we have that µ
(i+1)
q(ωj)

≤ µ(i)
q(ωj)

. Set i = i+ 1 and repeat the procedure

from Eq.C.14. We can see that µq(ωj) decreases after each iteration until convergence.

C.1 Additional convergence results

In this section we report the variational update over iterations until convergence of two key

parameters to model the dynamics of sparsity, namely the auxiliary process ωjt and the

resulting posterior inclusion probability P(γjt = 1). Figure 2(a) reports the convergence of

the algorithm updates for the posterior inclusion probability µq(γjt), for some times t and for

a parameter j which is always zero ∀t. This corresponds to β3t in the simulation example of

Section 3.1. The true update (solid black line) is compared to the approximation described

in Proposition 2.7 (red-dashed line). The vertical dashed line identifies the iteration at which

the conditions of Proposition 2.7 are satisfied for ε = 0.01. Notice that the approximation is

exact after the dashed line and the value of µq(γjt) is exactly equal to zero, meaning that we

induce sparsity in the posterior estimates as highlighted in Equation 19 in the main text.

Similarly, Figure 2(b) shows that the approximating variational update for µq(ωjt) as from

Proposition 2.7 quickly converge to the true update with convergence that is reached after

less than 30 iterations for ε = 0.01. The convergence of the updates translate in a rapid

convergence of the posterior estimates to the actual sparsity dynamics. Figure C.3 reports

the posterior estimates of µq(γjt) (left panel) and µq(ωjt) (right panel) across t = 1, . . . , n and

for a parameter j which is significant for only part of the sample. This corresponds to β2t

in the simulation example of Section 3.1. The value of the update is given by the color

intensity. After less than 30 iterations the posterior estimates of ωjt and γjt quickly converge

to their true values. This threshold corresponds to the iteration at which the conditions of

Proposition 2.7 are satisfied for ε = 0.01. In this respect, Figure C.3 complements Figure 2

in showing the oracle properties of our variational Bayes inference approach.
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(b) Convergence of updates for µq(ωjt)

Figure C.2: Variational update over iterations until convergence of the posterior inclusion proba-
bility µq(γjt) (left panel) and the auxiliary parameter µq(ωjt) (right panel), for some times t and for
a parameter j which is always zero ∀t.

D Additional simulation results

D.1 Comparison with MCMC

In this section we report additional details on the simulation study with respect to the

comparison between our variational Bayes inference approach and an MCMC equivalent.

In particular, we report the accuracy of q∗ (bjt) and q∗ (γjt) in approximating p (bjt|y) and

p (γjt|y) for j = 1, 2, 3, across simulations.

D.2 Comparison with existing variable selection methods

In this section we report additional details on the simulation setting implemented to compare

our BG model vs existing variable selection methods, as well as additional simulation results

for the intermediate dimension case with p = 100 predictors. Figure D.5 reports examples of

trajectories for the time-varying intercept which is always included β1t, a dynamic coefficient

β2:3,t with a single switch from γjt = 0 to γjt = 1, a more complex pattern β4:5,t with two
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Figure C.3: Left panel shows the variational update over iterations (x-axis) until convergence of
the vector of posterior inclusion probabilities (µq(γj1), . . . , µq(γjn)) (y-axis), for a parameter j which
is always zero ∀t. The value of the update is given by the color intensity. The right panel depicts
the behaviour of µq(ωjt), ∀t.

switches from γjt = 0 to γjt = 1 and vice-versa, and a short-lived regression coefficient β6:7,t

which is significant only for a short fraction of the sample.

Figure D.6 reports the F1-score for βjt with j = 1, 2, 3, 4, 5, 6, 7 and t = 1, . . . , 200 when

p = 100. A full description of the model set used for comparison against out dynamic

BG model is in Section 3.2 in the main text. Similarly to the main simulation results, the

performance of static variable selection models quickly deteriorates as the pattern of variable

significance becomes more complex. For instance, for a parameter with multiple episodes

of being “active” in the set of predictors the median accuracy of leading variable selection

methods such as the rolling-window estimates of the spike-and-slab SSVS and the EM spike-

and-slab EMVS of Ročková and George (2018) is around 50%. This compares to a more solid

75% on average for alternative dynamic variable selection methods such DVS from Koop

and Korobilis (2020) and DSS from Ročková and McAlinn (2021). More importantly, the

performance of our dynamic BG specification remains quite stable across specifications, with

a clear edge in terms of signal identification of the homoschedastic version BGH and the BG
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Figure D.4: Comparison between the approximating variational Bayes estimate and its equivalent
MCMC posterior draws. The left panels compare the accuracy of q∗ (bjt) in approximating p (bjt|y)
for j = 1, 2, 3 across simulations. The right panels compare the accuracy of q∗ (γjt) in approximating
p (γjt|y) for j = 1, 2, 3 across simulations.
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(a) Example of β1t (b) Example of β2t

(c) Example of β4t (d) Example of β6t

Figure D.5: Example of single simulated trajectories for βjt with j = 1, 2, 4, 6 and t = 1, . . . , 200.
See description in the main text for how different coefficient dynamics are generated.

with smoothed inclusion probabilities BGS.

Figure D.7 reports the point accuracy as measured by the mean-squared error (MSE).

The latter represents the squared distance between the true parameters βjt, t = 1, . . . , n

observed at each simulation and its corresponding posterior estimate β̂jt. The results for

p = 100 broadly confirms what we have observed in the main text (see Section 3.2). That is,

our dynamic BG framework outperforms both static and dynamic sparsity inducing priors,

especially within the context of complex dynamics such as β2:3,t and β4:5,t.

D.3 Correlated predictors and computational speed

In this Section, we are going to investigate the robustness of our dynamic variable selection

strategy with respect to different correlation assumptions on the predictors. The setting
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Figure D.6: F1-score for βjt with j = 1, 2, 3, 4, 5, 6, 7 and t = 1, . . . , 200 when p = 100.

is the same as the one outlined in Section 3.2, with the difference that we now consider

for the xjt, j = 1, . . . , 7 – meaning those predictors that carry a signal, either continuous

or intermittent – different auto-correlation (left panel) or cross-correlation (right panel) as-

sumptions. Specifically, we consider from 0.5 to 0.9 auto-correlation and from low to high

cross-sectional correlations. The latter is based on modifying the Cholesky decomposition

of a multivariate Gaussian distribution of xjt, j = 1, . . . , 7.

Not surprisingly, the accuracy of the dynamic variable selection deteriorates as the cross-

sectional correlation among predictors increases. For instance, Figure 8(b) shows that for

the pattern in which a predictor switches from zero to be significant only once, the median

F1-score goes from essentially one to 0.8/0.9, on average across methods. The deterioration

in the performance in more pronounced for short-lived signals. For instance, for the pattern

in which a predictor becomes significant only for a short period of time (bottom panels), the

median F1-score decreases from 0.8 for the low-correlation case, on average across methods,
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Figure D.7: MSE for βjt with j = 1, 2, 3, 4, 5, 6, 7 and t = 1, . . . , 200 when p = 100.

to 0.6 for the high-correlation case.

On the other hand, Figure 8(a) shows that our dynamic variable selection is quite robust

to autocorrelation in the predictors. For instance, the median F1-score remains quite intact

for a 0.5 vs 0.9 autocorrelation in the one-switch pattern. This holds also for the short-lived

signal (bottom panels). However, for the multiple switches from significant to non-significant

and vice-versa, autocorrelation do plays a more relevant role, as highlighted in the middle

panels. Nevertheless, Figures 8(b)-8(a) shows that with the exception of extremely high level

of autocorrelation and cross-sectional correlation, our dynamic variable selection method is

reasonably robust.

The last additional simulation result concerns a comparison in terms of computational

efficiency between our variational Bayes strategy and existing dynamic variable selection

methods for large-scale regressions. To evaluate computational costs across methods, we

track the running time in seconds of each algorithm. Figure D.9 highlights two main con-
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Figure D.8: F1-score for the different patterns and different assumptions on auto-correlation (left
panel) and cross-correlation (right panel) for the predictors xjt, j = 1, . . . , 7 in the simulation
exercise as outlined in Section 3.2.

clusions. First of all, the DSS is the slowest algorithm, regardless to the dimension of the

parameter p. Instead, when p = 50, the DVS is faster that BG, but when we move towards

higher dimensions the situation changes. Secondly, and perhaps more interesting, our algo-

rithm scales linearly rather than exponentially as the model size p increases. This is a direct

consequence of the embedded dimension reduction property as highlighted in Section 2.2.

E Additional empirical results

In this Section we are going to discuss some of the additional empirical results which have

not been included in the main text for the sake of brevity. We separate the additional results

between the inflation forecasting and the stock returns predictability applications.

In-sample estimates. The left panel of Figure E.10 reports the reports the time-varying

posterior inclusion probabilities and posterior regression coefficients estimates µq(βjt) from

our dynamic BG model for the core CPI (CPILFESL). Two comments are in order. First,

the results show that as far as core CPI is concerned, only lagged prices and real consumption

65



0

25

50

75

50 100 200
p=dim(β)

se
co

nd
s

Method
BG
DSS
DVS

Figure D.9: Computational efficiency of the algorithms computed as running time in second,
varying the dimension p.

expenditures (PCECC96) actually carry significant explanatory power above and beyond the

conditional mean. Second, our dynamic BG model is able to capture short-lived predictors

with a meaningful economic significance. This is the case of PCECC96 towards the end of

2020, which highlight the importance of demand pressure via fiscal stimulus on inflation.
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Figure E.10: Time-varying coefficients estimates µq(βjt) and posterior inclusion probabilities for
core CPI (CPILFESL) and GDP deflator (GDPCTPI).
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The right panel of Figure E.10 reports the dynamics of the predictors when the tar-

get variable is the one-quarter ahead GDP deflator (GDPCTPI). Again, our model is able

to capture short-lived predictors which contributed to the inflationary shock during the

Covid-19 crisis. For instance, increasing production of final products (IPFINAL) during late

2020 positively correlate with increasing inflation – as measured by GDPCTPI – towards

the 2021. Yet, lagged prices and monetary policy, as proxied by the 5-year treasury rate,

played a significant role until late 1990s/early 2000s. Interestingly, our dynamic BG model

picks UNRATETESTx – which measures the unemployment rate for less than 27 weeks of

unemployment – as significant predictor from the great financial crisis towards the end of

the sample. This evidence in favour of a time-varying Phillips curve, whereby the inverse

relationship between unemployment and inflation is corroborated by the data only during

specific time periods.

Figure E.11 reports the sum of absolute values of the variational mean of the active regres-

sion coefficients, i.e.,
∑p

j=1 |µq(βjt)|, which proxies the strength of the information available to

predict inflation. The information from the predictors clearly change over time, decreasing

in the middle part of the sample, from the 90s to early 2000. In addition, a stronger signal

from the predictors correlates with higher idiosyncratic volatility (dashed-red line); that is,

a richer model is needed to predict inflation at times of higher uncertainty as proxied by the

volatility in the residuals.

Out-of-sample forecasting. In this Section, we compare the performance of different

forecasting models based on the relative mean absoluted error (RMAE) calculated asRMAEi =∑T
t=τ |ei,t| −

∑T
t=τ |ebench,t|, where τ denotes the beginning of the out-of-sample period, and

|ei,t|, |ebench,t| the absolute value of the forecast errors from a competing model and a bench-

mark specification. Figure 12(a) reports the results for inflation forecasting in which the

benchmark is the UC model of Stock and Watson (2007). Consistent with the main empiri-

cal results in Section 4.1, our model outperforms all competing static and dynamic variable

selection methods across forecasting horizons and inflation measures.

Figure 12(b) reports the results for the aggregate returns on the stock market. Consistent

with the main empirical results in Section 4.2, we consider a naive forecast from the recursive

sample mean as a benchmark (see, e.g., Campbell and Thompson, 2008; Welch and Goyal,

2008). The results confirm that our dynamic BG model outperforms most of the competing

static and dynamic variable selection approaches.
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Figure E.11: Signal (blue) computed as
∑p

j=1 |µq(βjt)|, for t = 1, . . . , n, against the posterior
estimates of stochastic volatility exp (ht/2), for t = 1, . . . , n (dashed-red).
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(a) Inflation (b) Stock market

Figure E.12: Relative mean absolute error with respect to the benchmark. Left panel reports the
results for inflation forecasting whereby the benchmark is the unobserved component benchmark
UC. The sample period is from 1967Q3 to 2022Q3. The first prediction is generated in 1997Q3.
Right panel reports the results for forecasting the excess returns on the stock market. The sample
period is from 1971M11 to 2021M12. The first prediction is generated in 1991M01.
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