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Abstract

We propose an alternative approach towards cost mitigation in volatility-managed portfolios based
on smoothing the predictive density of an otherwise standard stochastic volatility model. Specifically,
we develop a novel variational Bayes estimation method that flexibly encompasses different smooth-
ness assumptions irrespective of the persistence of the underlying latent state. Using a large set of
equity trading strategies, we show that smoothing volatility targeting helps to regularise the extreme
leverage/turnover that results from commonly used realised variance estimates. This has important
implications for both the risk-adjusted returns and the mean-variance efficiency of volatility-managed
portfolios, once transaction costs are factored in. An extensive simulation study shows that our vari-
ational inference scheme compares favourably against existing state-of-the-art Bayesian estimation
methods for stochastic volatility models.
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1 Introduction

The widespread evidence that volatility tends to cluster over time and negatively correlates

with realised returns have motivated the use of volatility targeting to dynamically adjust the

notional exposure to a given portfolio. A conventional approach to volatility targeting builds

upon the idea that the capital exposure to a given portfolio is levered up (scaled down) based

on the inverse of the previous month’s realised variance. The theoretical foundation lies in

the evolution of the risk-return trade-off over time (see, e.g., Moreira and Muir, 2017).1 How-

ever, volatility management based on realised variance estimates is associated with a dramatic

increase in portfolio turnover and significant time-varying leverage. This casts doubt on the

usefulness of conventional volatility-managed portfolios, especially for large institutional in-

vestors with high all-in implementation costs (see, e.g., Patton and Weller, 2020).

Figure 1 shows this case in point. The left panel shows the volatility-managed portfolio

allocation based on realised variance estimates for three common portfolios; the market, and the

size and momentum factors as originally proposed by Fama and French (1996) and Jegadeesh

and Titman (1993), respectively. Simple volatility targeting leads to a tenfold notional exposure

compared to the original equity strategy. This excess leverage is pervasive across a broad set

of 158 equity trading strategies which will be introduced in Section 3. For instance, the middle

panel in Figure 1 shows that volatility targeting based on realised variance leads to a leverage

between 1.8 and 4 times for more than 10%, and between 3 to 11 times for at least 1% of the

original 158 equity strategies. This makes volatility-managed strategies potentially both risky

and costly to implement, especially when volatility targeting is missed and/or forecasts are not

sufficiently accurate (see, e.g., Bongaerts et al., 2020).

A simple approach towards cost mitigation is to reduce liquidity demand by slowing down

the time-series variation in the factor leverage; this is often achieved by using less erratic

estimates of risk, such as the realised volatility instead of the realised variance, or by introducing

1Notice that the terms “volatility-managed”, “volatility-targeting”, “volatility-managing” are used inter-
changeably throughout the paper as they carry the same meaning for our purposes.
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leverage constraints in the form of a capped notional exposure (see, e.g., Moreira and Muir,

2017; Cederburg et al., 2020; Barroso and Detzel, 2021). While imposing leverage constraints

may simplifies an empirical analysis, they do not regularise the often erratic monthly underlying

volatility estimates and are typically set arbitrarily, absent sounded economic arguments for

their optimal setup. In this respect, the economic value of leverage constraints is an indirect

function of the statistical accuracy of the underlying volatility estimates.2

In this paper, we propose an alternative approach towards slowing down liquidity demand

in volatility-managed portfolios which is based on smoothing the predictive density of an oth-

erwise standard stochastic volatility model. Our view is that by smoothing monthly volatility

forecasts, one can regularise trading turnover and therefore mitigate the effect of transaction

costs on volatility-managed portfolios. Such regularisation is achieve by a variational Bayes

inference scheme which flexibly encompasses different smoothness assumptions irrespective of

the underlying persistence of the latent state. Put it differently, our underlying assumption is

that actual monthly returns’ volatility may simply follow a conventional autoregressive latent

stochastic process.3 However, monthly volatility forecasts can be noisy, which leads to extreme

portfolio turnover from volatility targeting. As a result, one could “filter out” the noise based

on a posterior approximation density which embeds both non-smooth predictive densities and

different types of smoothing, e.g., wavelet basis functions (see Rue and Held, 2005).

We evaluate the economic performance of our smooth volatility prediction based on a broad

sample of 158 equity trading strategies. We first consider the nine equity factors examined by

Moreira and Muir (2017). We augment the first group of test portfolios with a second group

covering a broader set of trading strategies based on the list of 153 characteristic-managed

portfolios, or “factors”, reported in Jensen et al. (2022). In addition to previous month’s

realised variance (henceforth RV), we benchmark our smooth volatility-managed portfolios (SSV)

2This is akin a joint-test problem whereby leverage constraints are well-specified only to the extent that the
assumptions underlying the volatility estimates are correct.

3See for example, Harvey et al. (1994); Andersen and Sørensen (1996); Ghysels et al. (1996); Gallant et al.
(1997); Bali (2000); Durbin and Koopman (2000); Jacquier et al. (2002, 2004); Shephard and Pitt (2004); Yu
(2005); Han (2006); Hansen et al. (2008); Bansal et al. (2010); Schorfheide et al. (2018), among others. An
extensive review of the use of stochastic volatility models as an alternative to ARCH-type approaches can be
found in Shephard (2020).
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against several alternative implementations of volatility-targeting. The first uses the expected

variance from a simple AR(1) rather than realized variance (RV AR), which helps to reduce the

extremity of the weights. Second, we consider an alternative six-month window to estimate the

longer-term realised variance (RV6) as proposed by Barroso and Santa-Clara (2015); Barroso

and Detzel (2021). Third, we consider both a long-memory model for volatility forecast as

proposed by Corsi (2009) (HAR), and a standard AR(1) stochastic volatility model (SV) (see,

e.g., Taylor, 1994). Finally, we consider a plain GARCH(1,1) specification (Garch), which has

been proved a challenging benchmark in volatility forecasting (see, Hansen and Lunde, 2005).

1.1 Main findings

Our empirical tests evaluate the performance of alternative volatility-managed implementations

of a broad set of volatility managed portfolios, each of them constructed as

yσt =
c∗

σ̂2
t−1|t

yt, (1)

where yσt and yt are the scaled and the original portfolio’s excess returns in month t, respectively.

Here σ̂2
t−1|t is the variance forecast of the original portfolio’s returns at month t based on

information available up to month t − 1. We follow Cederburg et al. (2020) and consider

both an unconditional and a real-time implementation of volatility targeting. The former

implies that the constant c∗ is chosen such that the unconditional variance of the managed yσt

and unmanaged yt portfolios coincide. For the real-time implementation, c∗t is time-varying

and is chosen such that the variance of the managed and unmanaged portfolios coincide only

conditional on the returns up to month t.

Most prior studies assess the value of volatility targeting strategies by comparing the Sharpe

ratios obtained by scaled factors yσt as in Eq.(1), with the Sharpe ratios obtained from the orig-

inal factors yt (see, e.g., Barroso and Santa-Clara, 2015; Daniel and Moskowitz, 2016; Moreira

and Muir, 2017; Bianchi et al., 2022). We follow this approach and confirm the existing ev-

idence in the literature that stand-alone investments in volatility-managed portfolios do not
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systematically improve upon unmanaged factors (see, e.g., Cederburg et al., 2020; Barroso and

Detzel, 2021). However, volatility targeting based on our smooth volatility forecasts substan-

tially improves both upon conventional realised variance measures and a variety of competing

volatility forecasting methods. Specifically, volatility-managed portfolios show a substantially

lower turnover compared to alternative volatility forecasting methods. The right panel of Fig-

ure 1 shows this case in point. The time variation of leverage for the volatility-managed market

portfolio is much lower for our SSV compared to a standard RV or a lower-frequency RV6.

Perhaps more importantly, we show that greater portfolio stability translates into a sub-

stantially large risk-adjusted performance. For conservative levels of transaction costs, our SSV

produces a substantially higher economic utility compared to both standard and non-standard

volatility forecasting methods. For each equity strategy and volatility-targeting methodology,

we estimate the spanning regression on both the scaled and unscaled returns,

yσt = α + βyt + εt, (2)

The economic implication of α > 0 is that volatility scaled portfolios may expand the mean-

variance frontier relative to the unscaled portfolios (see, e.g., Gibbons et al., 1989). We test

this assumption by comparing the certainty equivalent return (CER) when factoring in mod-

erate levels of notional transaction costs, with and without leverage constraints. Specifically,

we compare two strategies: (i) a strategy that allocates between a given volatility-managed

portfolio and its corresponding original portfolio, and (ii) a strategy constrained to invest only

in the original portfolio. The baseline combination correspond to the optimal mean-variance

allocation assuming a risk aversion coefficient equal to five. We show that when transaction

costs are considered, our SSV stands out as the most profitable rescaling method, on average.

Perhaps more interestingly, the SSV is the only with a positive median CER differential with

respect to the unmanaged portfolio strategies. That is, the economic gain is positive for at least

50% of the equity strategies considered. Interestingly, a regularisation of the volatility target-

ing weights based on leverage constraints does not reduce the gap between our SSV method

4



and all the alternative weighting schemes we consider. Similarly, the economic gain from a

mean-variance combination strategy of the unmanaged and managed portfolios is substantially

in favour of our SSV method.

In addition to the empirical analysis on a broad set of equity trading strategies, we explore

the statistical underpinnings of our modeling framework through an extensive simulation exer-

cise. We compare the estimation accuracy of our VB inference scheme against state-of-the-art

Bayesian methods, such as MCMC (see, e.g., Hosszejni and Kastner, 2021) and variational

Bayes (see, e.g., Chan and Yu, 2022). The results show that when we do not arbitrarily im-

pose any smoothness in the posterior estimates of the latent stochastic volatility state, our

algorithm is as accurate as MCMC and existing variational Bayes methods. Yet, when we

smooth the posterior estimates the accuracy deteriorates. This is expected since the wavelet

basis functions mechanically tilts the posterior estimates of the parameters towards a more

persistent latent state relative to the actual data generating process.

1.2 Reference literature

In addition to Moreira and Muir (2017), our work contributes to a growing literature that seeks

to understand the origins and the dynamic properties of volatility-managed portfolios (see, e.g.,

Harvey et al., 2018; Bongaerts et al., 2020; Cederburg et al., 2020; Liu et al., 2019; Barroso and

Detzel, 2021; Wang and Yan, 2021, among others). Liu et al. (2019) shows that a real-time

implementation of volatility targeting suffers from severe drawdowns, compared to unmanaged

portfolios. Similarly, Cederburg et al. (2020) shows that volatility-managed portfolios do not

systematically outperform the corresponding unmanaged equity strategies.

We contribute to this literature by highlighting the importance of volatility modeling for

the profitability of volatility-managed portfolios. Specifically, we show that smoothing the

volatility forecasts provide an intuitive regularization to volatility targeting. This translates in

an economically better performance versus realised variance measures when notional trading

costs are factored in. In addition, we explicitly acknowledge that the uncertainty around the

volatility predictions might be pervasive. By taking a Bayesian approach we can quantify the
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uncertainty around the scaled portfolio returns, so that a more direct statistical comparison

between scaled and unscaled factors can be made.

A second strand of literature we contribute to, relates to the estimation of stochastic volatil-

ity models. The non-linear interaction between the latent volatility state and the observed

returns lead to a likelihood function that depends upon high dimensional integrals. A va-

riety of estimation procedures have been proposed to overcome this difficulty, including the

generalized method of moments (GMM) of Melino and Turnbull (1990), the quasi maximum

likelihood (QML) approach of Harvey et al. (1994) and Ruiz (1994), and the efficient method of

moments (EMM) of Gallant et al. (1997). Within the context of Bayesian methods, the anal-

ysis of stochastic volatility models has been initially proposed by Kim et al. (1998); Durbin

and Koopman (2000); Jacquier et al. (2002, 2004); Shephard and Pitt (2004); Durbin and

Koopman (2000). We contribute to this literature by proposing a novel variational Bayes esti-

mation framework which allows to flexibly smooth the predictive density of the latent stochastic

volatility state, irrespective of the underlying assumption about the data generating process.

Our approach is general, meaning that encompasses different smoothness assumptions for the

volatility forecasts without changing the underlying model structure.

Finally, this paper connects to a third strand of literature that introduces the use of varia-

tional Bayes methods for economic forecasting (see, e.g., Gefang et al., 2019; Koop and Koro-

bilis, 2020; Chan and Yu, 2022). Variational approximate methods (Bishop, 2006) have become

popular as computational feasible alternatives to Markov Chain Monte Carlo (MCMC) for ap-

proximating the posterior distributions. This type of inferential methods have been used in

a wide range of applications, ranging from statistics (Rustagi, 1976) to quantum mechanics

(Sakurai, 1994), statistical mechanics (Parisi, 1988), machine learning (Hinton and Van Camp,

1993) and then generalized to many probabilistic models, taking advantage of the graphical

models’ representation (Jordan et al., 1999). We contribute to this literature by proposing a

flexible approximation based on a Gaussian Markov random field approximation of the latent

stochastic volatility state. This allows to consider both non-smooth and smooth volatility

forecasts based on a simple twist in the posterior approximating density of the latent state.
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2 Modeling framework

Let consider a standard univariate dynamic model with stochastic volatility (Taylor, 1994). A

general specification is based on a state-space representation of the form:

yt = xᵀ
tβ + exp(ht/2)εt, εt ∼ N(0, 1) (3)

ht = c+ ρ(ht−1 − c) + ut, ut ∼ N(0, η2), (4)

where yt, xt ∈ Rp, ht = log σ2
t are, respectively, the log-return, a set of covariates, and the

log-volatility of an equity strategy at time t, for t = 1, 2, . . . , n. The error terms εt and

ut are mutually independent Gaussian white noise processes. The latent process in (4) is a

conventional autoregressive process of order one, with unconditional mean c, persistence ρ, and

conditional variance η2. We assume |ρ| < 1, so that the initial state h0 can be sampled from the

marginal distribution, i.e. h0 ∼ N
(
c, η2

1−ρ2

)
. Notice that, for comparability with the existing

literature on volatility-managed portfolios, we assume a constant mean µ in the observation

equation (3), such that there are no covariates and µ = xᵀ
tβ with xt an n-dimensional vector

of ones. However, in the following, we provide the full specification of our variational Bayes

inference scheme under the general model with covariates.

2.1 Variational Bayes inference

A variational Bayes approach to inference requires to minimize the Kullback-Leibler (KL)

divergence between an approximating density q(ϑ) and the true posterior density p(ϑ|y), (see,

e.g. Blei et al., 2017). The KL divergence cannot be directly minimized with respect to ϑ

because it involves the expectation with respect to the unknown true posterior distribution.

Ormerod and Wand (2010) show that the problem of minimizing KL can be equivalently stated

as the maximization of the variational lower bound (ELBO) denoted by p (y; q):

q∗(ϑ) = arg max
q(ϑ)∈Q

log p (y; q) , p (y; q) =

∫
q(ϑ) log

{
p(y,ϑ)

q(ϑ)

}
dϑ, (5)
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where q∗(ϑ) ∈ Q represents the optimal variational density and Q is a space of functions.

The choice of the family of distributions Q is critical and leads to different algorithmic ap-

proaches. In this paper we consider two cases. The first is a mean-field variational Bayes

(MFVB) approach which is based on a non-parametric restriction for the variational density,

i.e. q(ϑ) =
∏p

i=1 qi(ϑi) for a partition {ϑ1, . . . ,ϑp} of the parameter vector ϑ. Under the

MFVB restriction, a closed form expression for the optimal variational density of each compo-

nent q(ϑj) is defined as:

q∗(ϑj) ∝ exp
{
Eq(ϑ\ϑj)

[
log p(y,ϑ)

]}
, q(ϑ \ ϑj) =

p∏
i=1
i 6=j

qi(ϑi), (6)

where the expectation is taken with respect to the joint approximating density with the j-th

element of the partition removed q?(ϑ \ ϑj). This allows to implement a coordinate ascent

variational inference (CAVI) algorithm to estimate the optimal density q∗(ϑ). Equation (6)

shows that the factorization of q(ϑ) plays a central role in developing a MFVB algorithm. In the

following, we consider a factorization of the joint variational density of the latent log-variances

h and the parameters ϑ = (β, c, ρ, η2) of the form:

q(h,ϑ) = q(h)q(ϑ) = q(h)q(β)q(c)q(ρ)q(η2). (7)

In the following, we focus on the approximating density for the latent process h, where the

novelty of our estimation procedure lies compared to the existing literature (see, e.g., Chan

and Yu, 2022). For the interested reader, in Appendix A.1 we provide the full set of derivations

of the optimal variational densities for the parameters q(β), q(c), q(ρ), and q(η2).

The marginal distribution p (h) of the joint vector hᵀ = (h0, h1, . . . , hn) admits a Gaussian

Markov random field (GMRF) representation h ∼ Nn+1(cιn+1, η
2Q−1) that preserves the time

dependence structure implied by the autoregressive process. Specifically, the matrix Q = Q(ρ)

is a tridiagonal precision matrix with diagonal elements q1,1 = qn+1,n+1 = 1 and qi,i = 1 + ρ2

for i = 2, . . . , n, and off-diagonal elements qi,j = −ρ if |i − j| = 1 and 0 elsewhere (see Rue
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and Held, 2005). We exploit this representation to obtain the approximating density q(h)

as h ∼ Nn+1(µq(h),Ω
−1
q(h)) with mean vector µq(h) = Wfq(h) and variance-covariance matrix

Σq(h) = Ω−1q(h).

Notice that the choice of µq(h) as a linear projection Wfq(h), with fq(h) ∈ Rk the projection

coefficients and W an (n + 1) × k deterministic matrix, has a direct effect on the posterior

estimates of log-volatility. In Section 2.1.1 we discuss in details how different structures of

W leads to different posterior estimates irrespective of the underlying dynamics of the latent

state. This is a key feature of our estimation strategy since it allows to customise the volatility

forecasts without changing the underlying model assumptions.

In the following we focus on the more general heteroschedastic case, whereas the optimal

density and the estimation details for the more restrictive homoschedastic case are discussed

in Appendix A.2. The optimal parameters ξ = (fq(h),Σq(h)) of the approximating density q (h)

can be found by solving the optimization problem

ξ̂ = arg max
ξ
{Eq(log p(y,h))− Eq(log q(h))} , (8)

To solve the optimization we leverage on the GMRF representation of q (h) and exploit the

results in Rohde and Wand (2016). They provide a closed-form updating scheme for the

variational parameters when the approximating density is a multivariate Gaussian. Proposition

2.1 the details on the optimal updating scheme for the variational density of the latent volatility

states. The proof and analytical derivations are available in Appendix A.3. A pseudo-code for

the implementation of the proposed iterative estimation procedure is available in Algorithm 1

in Appendix A.4.

Proposition 2.1. Let µq(s) = (µq(s1), . . . , µq(sn))
ᵀ with µq(st) = (yt−xᵀ

tµq(β))
2 + tr

{
Σq(β)xtx

ᵀ
t

}
,

and µq(β),Σq(β) denote the variational mean and covariance of the regression parameters β.

Assuming a GMRF representation of h ∼ Nn+1(µq(h),Ω
−1
q(h)), with mean vector µq(h) = Wfq(h)
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and variance-covariance matrix Σq(h) = Ω−1q(h), an iterative algorithm can be set as:

Σnew
q(h) =

[
∇2
µq(h)µq(h)

S(µoldq(h),Σ
old
q(h))

]−1
, (9)

fnewq(h) = foldq(h) + W+ Σnew
q(h)∇µq(h)

S(µoldq(h),Σ
old
q(h)), (10)

µnewq(h) = Wfnewq(h) , (11)

with W+ = (WᵀW)−1Wᵀ the left Moore–Penrose pseudo-inverse of W, and S(µq(h),Σq(h))

equal to Eq(log p(h,y)) (see Eq.A.25), such that,

∇µq(h)
S(µq(h),Σq(h)) = −1

2
[0, ιᵀn]ᵀ +

1

2
[0,µᵀ

q(s)]
ᵀ � e−µq(h)+

1
2
diag(Σq(h)) (12)

− µq(1/η2)µq(Q)(µq(h) − µq(c)ιn+1), (13)

∇2
µq(h)µq(h)

S(µq(h),Σq(h)) = −1

2
Diag

[
[0,µᵀ

q(s)]
ᵀ � e−µq(h)+

1
2
diag(Σq(h))

]
− µq(1/η2)µq(Q), (14)

where ιn is an n-dimensional vector of ones, µq(1/η2) is the variational mean of 1/η2, µq(Q) is

the element-wise variational mean of Q, and � denotes the Hadamard product.

Our approach expands the global approximation method proposed by Chan and Yu (2022)

along three main dimensions. First, we relax the assumption that the initial distribution

q(h0) is independent on the trajectory of the latent state q(h1), that is, we do not assume

q(h) = q(h0)q(h1). Second, we do not make any assumption on the Σq(h), which is not fixed

conditional on µq(h), but is estimated jointly with µq(h). Third, our latent volatility state

accommodates a more general AR(1) dynamics, instead of a random walk. While the latter

reduces the parameter space, it imposes a strong form of non-stationarity in the log-volatility

process. In Section 4, we show via an extensive simulation study that all these features have

a significant effect on the accuracy of the variational Bayes estimates.

2.1.1 Smoothing the volatility estimates. The choice of µq(h) as a linear projection

Wfq(h), with fq(h) ∈ Rk the projection coefficients and W an (n+ 1)× k deterministic matrix,

has a direct effect on the posterior estimates of log-volatility. Figure 2 shows examples of
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the shape of µq(h) = Wfq(h) for difference choices of W (solid line), and the corresponding

confidence intervals implied by Σq(h) (dashed line). The gray trajectory represents the true

simulated value of the log-stochastic volatility hᵀ = (h0, h1, . . . , hn) for n = 300. The top-left

panel reports the posterior estimates obtained by setting W = In+1, with In+1 an identity

matrix of dimension n+ 1. This represents a non-smooth estimate which is akin to the output

of a standard MCMC estimation scheme (see, e.g., Hosszejni and Kastner, 2021).

The remaining panels of Figure 2 highlight a key feature of our estimation strategy; that is, it

allows to customise the volatility forecasts without changing the underlying model assumptions.

For instance, the top-right panel shows the posterior estimates of the latent volatility state

with W a matrix of wavelet basis functions with a fixed degree of smoothness l = 4 (see Wand

and Ormerod, 2011). The fact that the matrix W enters both in the conditional mean and

covariance of the optimal variational density q∗ (h) allows to smooth not only the conditional

mean of the latent volatility state, but also the corresponding confidence intervals.

The bottom panels in Figure 2 highlight the flexibility of our approach; the left panel shows

that more than one smoothing assumption can coexists in the same optimal variational density.

For instance, the shape of the posterior estimates assuming W = In+1 for the first half of the

sample and W a wavelet basis function with l = 4 for the second half of the sample. The

bottom-right panel shows that a variety of smoothing functions can be adopted; for instance,

the estimates of the latent stochastic volatility can be smoothed based on W equal to be a

B-spline basis matrix representing the family of piecewise polynomials with the pre-specified

interior knots (kn), degree (dg), and boundary knots.

Figure 3 depicts the form of W when B-spline and Daubechies wavelets are used. The form

of W in case of B-spline basis functions (top) and wavelet basis functions (bottom). Right

panels correspond to columns of the matrix W. The B-spline basis functions is a sequence

of piecewise polynomial functions of a given degree, in this case dg = 3. The locations of

the pieces are determined by the knots, here we assume kn = 20 equally spaced knots. The

functions that compose the wavelet basis matrix W are constructed over equally spaced grids

on [0, n] of length R, where R is called resolution and it is equal to 2l−1, where l defines the
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level, and as a result the degree of smoothness. The number of functions at level l is then equal

to R and they are defined as dilatation and/or shift of a more general mother function.

2.1.2 Variance prediction. Consider the posterior distribution of p(h,ϑ|y) given the in-

formation set up to time t, y = {y1:t}, and p(hn+1|y,h,ϑ) the likelihood for the new latent

state hn+1. The predictive density then takes the familiar form,

p(hn+1|y) =

∫
p(hn+1|y,h,ϑ)p(h,ϑ|y) dhdϑ. (15)

Given a variational density q(h,ϑ) = q(h)q(ϑ) that approximates p(h,ϑ|y), we follow Gu-

nawan et al. (2021) and obtain the variational predictive distribution:

q(hn+1|y) =

∫
p(hn+1|y,h,ϑ)q(h)q(ϑ) dhdϑ

=

∫
p(hn+1|hn,ϑ)q(hn)q(ϑ) dhndϑ, (16)

where the second equality follows from Markov property. Recall that within the context of a

volatility-managed portfolio our object of interest is the forecast of the variance σ2
t , rather than

the log-volatility ht for t = n+ 1. Since hn = log σ2
n, the density of the conditional variance is

readily available as q
(
σ2
n+1|y

)
= ∂hn+1

∂σ2
n+1

q (hn+1|y) = 1
σ2
n+1

q (hn+1|y). The integral in Eq.(16) can-

not be solved analytically. However, it can be approximated through Monte Carlo integration

exploiting the fact that the optimal variational densities q(hn) and q(ϑ) are known and we can

efficiently sample from them. A simulation-based approximated estimator for the variational

predictive distribution of the conditional variance q(σ2
n+1|y) is therefore obtained by averaging

the density p(hn+1|h(i)n ,ϑ(i)) over the draws h
(i)
n ∼ q(hn) and ϑ(i) ∼ q(ϑ), for i = 1, . . . , N from

the optimal variational density, such that q̂(σ2
n+1|y) = 1

σ2
n+1

1
N

∑N
i=1 p(hn+1|h(i)n ,ϑ(i)).
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3 Empirical results

We now investigate the statistical and economic value of our smooth volatility forecast within

the context of volatility targeting across a large set of equity strategies. We first consider

the nine equity factors examined by Moreira and Muir (2017). We collect daily and monthly

data on the excess returns on the market, and the daily and monthly returns on the size,

value, profitability and investment factors as originally proposed by Fama and French (2015),

in addition to the profitability and investment factors from Hou et al. (2015) and the betting-

against-beta factor from Frazzini and Pedersen (2014).4

We augment the first group of test portfolios with a second group covering a broader set

of trading strategies based on established asset pricing factors. We start with the list of 153

characteristic-managed portfolios, or “factors”, reported in Jensen et al. (2022). We then

restrict our analysis to value-weighted strategies that can be constructed using the Center for

Research in Security Prices (CRSP) monthly and daily stock files, the Compustat Fundamental

annual and quarterly files, and the Institutional Broker Estimate (IBES) database. In addition,

we exclude a handful of strategies for which there are missing returns. This process identifies

149 value-weighted long-short portfolios for which we collect both daily and monthly returns.

For a more detailed description of the portfolio construction we refer to Jensen et al. (2022).5

The combined sample consists of 158 equity trading strategies.

3.1 Construction of volatility-managed portfolios

For a given equity trading strategy, let yt be the buy-and-hold excess portfolio return in month

t. We follow Moreira and Muir (2017) and construct the corresponding volatility-managed

4Data on the Fama and French (2015) factors and the Jegadeesh and Titman (1993) momentum are available
on the Kenneth French’s website at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_

library.html. Data on the betting-against-beta factor are available on the AQR website https://www.aqr.

com/Insights/Datasets/Betting-Against-Beta-Original-Paper-Data.
5Data on the 153 set of characteristic-based portfolios can be found at https://jkpfactors.com. We thank

Bryan Kelly for making these data available.
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portfolio return yσt as

yσt =
c∗

σ̂2
t−1|t

yt, (17)

where c∗ is a constant chosen such that the unconditional variance of the managed yσt and

unmanaged yt portfolios coincide, and σ̂2
t−1|t is the variance forecast of unscaled portfolio returns

based on information available up to the previous month t− 1. The objective of Eq.(17) is to

adjust the capital invested in the original equity strategy based on the inverse of the (lagged)

predicted variance. Effectively, a volatility-managed portfolio is targeting a constant level of

volatility, rather than a constant level of notional capital exposure. As such, the dynamics

investment position in the underlying portfolio c∗

σ̂2
t−1|t

is a measure of (de)leverage required to

invest in the volatility-portfolio in month t. Notice that in the standard implementation in

Eq.(18) the scaling parameter c∗ is not know by an investor in real time as it requires to observe

the full time series of the unscaled returns yt and the volatility forecasts σ̂2
t|t−1.

A benchmark approach to approximate the variance forecast at month t, σ̂2
t−1|t is to use the

previous month’s realized variance (henceforth RV) calculated based on daily portfolio returns

(see, e.g., Barroso and Santa-Clara, 2015; Daniel and Moskowitz, 2016; Moreira and Muir,

2017; Cederburg et al., 2020; Barroso and Detzel, 2021),

σ̂2
t|t−1 =

22

Nt−1

Nt−1∑
j=1

y2j,t−1, , (18)

where yj,t−1 be the excess returns on a given portfolio in day j = 1, . . . ,Nt−1 for month t− 1.

In addition to the realised variance, we compare our smoothing volatility targeting approach

(SSV) against a variety of alternative rescaling approaches. The first uses the expected variance

from a simple AR(1) rather than realized variance (RV AR), which helps to reduce the extremity

of the weights. Second, we follow Barroso and Detzel (2021) and consider an alternative six-

month window to estimate the longer-term realised variance (RV6). Third, we consider both a

long-memory model for volatility forecast as proposed by Corsi (2009) (HAR), and a standard

AR(1) latent stochastic volatility model (SV) (see, e.g., Taylor, 1994). Finally, we consider a
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plain GARCH(1,1) specification (Garch), which has been shown to be a challenging benchmark

in volatility forecasting (see, Hansen and Lunde, 2005). Throughout the empirical analysis we

consider, we follow Cederburg et al. (2020) and consider both unconditional volatility targeting

– whereby c∗ is calibrated to match the unconditional volatility of the scaled and unscaled

portfolios –, as well as real-time volatility targeting – whereby c∗t is calibrated to match the

volatility of the scaled and unscaled portfolios at each month t.

3.2 A simple statistical appraisal

In this section we provide a statistical appraisal of the performance of our smoothing volatility

targeting approach compared to both conventional realised variance measures and benchmark

volatility forecasts. This is based on the predictive density of the volatility forecasts obtained

for both the non-smooth SV and smooth SSV stochastic volatility models. Recall that real-time

volatility targeting for month t takes the form ωt =
c∗t

σ̂2
t|t−1

, t = 1, . . . , n. As a result, given the

unmanaged factors yt and the recursively calibrated coefficient c∗t , for each month we can define

the distribution of the volatility-managed returns based on the variational predictive density

q(σ2
t |y) with y collecting the strategy returns up to t− 1 (see Section 2.1.2 for more details).

Figure 4 shows this case in point. The top panels report the distribution of the volatility-

managed portfolio returns implied by the non-smooth SV (red area) and smooth SSV (blue area)

stochastic volatility models. For the sake of simplicity, we report the volatility-managed returns

on the market portfolio over three distinct months. The returns on the unmanaged portfolio

and its scaled version based on previous month’s realised variance are indicated as a white and

green circle, respectively. By comparing this distribution on a given month with the realised

returns on a benchmark strategy for the same month, we can calculate Prob
(
yM1
t < yM0

t

)
,

which is akin to the p-value on a one-side test where the null hypothesis is H0 : yM1
t ≤ yM0

t .

For instance, a Prob
(
yM1
t < yM0

t

)
< 0.05 implies that the null hypothesis H0 is rejected

with a p-value of 0.05 in favour of the alternative H1 : yM1
t > yM0

t . On the opposite, if

Prob
(
yM1
t < yM0

t

)
> 0.05, the null hypothesis H0 can not be rejected with a p-value of 0.05.

Here yM0
t represents the returns on the benchmark volatility managing method, for e.g., RV,
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whereas yM1
t the returns on volatility targeting based on either a non-smooth or a smooth

stochastic volatility model.

The left panel shows the results for October 1995. The Prob (ySSVt < yRVt ) = 0.07, that

is the null H0 : ySSVt ≤ yRVt can not be rejected at standard significance levels. Similarly,

Prob (ySSVt < yUt ) = 0.66, which again suggests that the returns on the SSV volatility targeting

and the unmanaged counterpart are statistically equivalent. The right panel of Figure 4 show as

another example the returns distribution on March 2009. The probability Prob (ySSVt < yRVt ) =

0, that is the null hypothesis H0 : ySSVt ≤ yRVt is rejected with a p-value of 0.000 in favour of the

alternative H1 : ySSVt > yRVt . On the other hand, Prob (ySVt < yRVt ) = 0.08, which suggests that

the SV model produce a volatility-managed portfolio which is statistically equivalent to the one

implied by a realised variance RV. Similarly we can setup the opposite one-side test, which is

for the null hypothesis H0 : ySSVt ≥ yRVt against the alternative H1 : ySSVt < yRVt . The bottom

panel of Figure 4 shows that the distribution of SSV and SV can be highly time varying. The

figure shows as an example the distribution of the returns on a volatility-managed momentum

portfolio. The large negative performance of the unmanaged momentum strategy in March-

May 2009 coincides with the so-called “momentum crashes” (see Barroso and Santa-Clara,

2015; Daniel and Moskowitz, 2016; Bianchi et al., 2022).

Two interesting facts emerge. First, and perhaps not surprisingly, a non-smooth stochastic

volatility model tends to produce relatively similar volatility adjusted returns with few excep-

tions. In this respect, a standard RV rescaling substantially overperform (underperform) the

unmanaged portfolio during periods of large negative (positive) returns. Put it differently,

standard volatility targeting helps to mitigate tail risk at the expense of cutting upside oppor-

tunities. This is consistent with the abundant empirical evidence that indeed, on average, RV

targeting does not systematically outperforms unmanaged portfolios. The second interesting

fact pertains our smoothing volatility targeting; the returns on the SSV are closer to the original

equity strategy.

We now take to task the intuition highlighted in Figure 4 and compare our SSV methodology

against all of the competing volatility targeting methods, across all of the 158 equity strategies
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in our sample. Specifically, we calculate each month two indicator dummies I+i,t, I
−
i,t for each of

the t = 1, . . . , n and each of the i = 1, . . . ,m equity trading strategies,

I+i,t =

{
1 if Prob

(
ySSVi,t < yM0

i,t

)
< 0.05

0 otherwise
I−i,t =

{
1 if Prob

(
ySSVi,t > yM0

i,t

)
< 0.05

0 otherwise

(19)

We can then calculate p+i = n−1
∑n

t=1 I
+
i,t and p−i = n−1

∑n
t=1 I

−
i,t, with n the sample of observa-

tions, for each equity trading strategy. These indicate the frequency over the full sample with

which the null hypothesis H0 is rejected in favour of the alternative H1 : ySSVt > yM0
t , i.e., p+i ,

or the alternative H1 : ySSVt < yM0
t , i.e., p−i .

Figure 5 reports the difference between p+i and p−i for all 158 equity strategies. This indi-

cates the imbalance between outperformance and underpeformance of our ySSVi,t compared to a

benchmark yM0
i,t . The left panel compares our SSV against the original factor portfolios U and

the volatility targeting based on the realised variance RV. The comparison against the unscaled

factors confirms the results of Cederburg et al. (2020); there is no systematic outperformance

of volatility targeting versus unmanaged equity strategies over the sample under investigation.

This is reflected in the fact that the difference between p+i and p−i is centered around zero for

the cross section of equity strategies. The middle and right panel also confirms that, uncon-

ditionally over the full sample, the performance of our SSV does not systematically dominate

other competing volatility targeting methods. For instance, the spread pi = p+i − p−i is as low

as -0.1 and as high as 0.05 when comparing SSV vs RV6. Similarly, pi ranges between -0.05 and

0.05 when comparing our SSV against the HAR or the Garch methods.

The results in Figure 5 show that the returns on volatility-managed portfolios are statis-

tically equivalent to unscaled factors, at least unconditionally. We now look at a conditional

aggregation of the indicators I+i,t and I−i,t. Specifically, we construct a p+t = m−1
∑m

i=1 I
+
i,t and

p−t = m−1
∑m

i=1 I
−
i,t, with m the number of equity strategies, for month t = 1, . . . , n. Figure 6

reports the spread pt = p+t − p−t across the whole sample of observations. The left panel com-

pares the performance of SSV versus RV and the unmanaged factors U. Two interesting facts
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emerge; first, for the most part of the sample the performance of the SSV is subpar compared

to the RV. This is primarily concentrated in the expansionary periods, whereby volatility is low

and the exposure to the original unscaled portfolios is levered up (see, e.g., Figure 1).

Second, a smooth volatility targeting substantially improves upon RV during the recession in

the aftermath of the dot-com bubble and the great financial crisis of 2008/2009. Interestingly,

most of the underperformance of SSV versus U is concentrated during the burst of the dot-

com bubble. A possible explanation is that volatility-targeting implies a deleveraging on the

original factor, in period in which high volatility did not necessarily correspond to large losses

in the original equity factors. The middle and right panel in Figure 6 shows that alternative

volatility measures to RV share a similar pattern compared to our SSV; that is, by smoothing

volatility forecasts the performance during major recessions improves at the expenses of a

subpar performance during economic expansions and/or lower-volatility periods.

3.3 Economic evaluation

We begin our analysis by presenting detailed results on direct performance comparison between

unscaled and scaled portfolios without considering transaction costs. Next, we build upon

Moreira and Muir (2017); Cederburg et al. (2020) and consider two distinct levels of notional

transaction costs to implement volatility targeting. Finally, we compare our SSV volatility

targeting against both RV and other competing forecasting methods when both transaction

costs and leverage constraints are considered (see, e.g., Barroso and Detzel, 2021).

3.3.1 Baseline results without transaction costs. Table 1 reports the annualised Sharpe

ratio (henceforth SR) and the Sortino ratio, for both unconditional and real-time volatility tar-

geting. For each performance measure, we report both the mean value and the 2.5th, 25th,

50th, 75th, and 97.5th percentiles across all the 158 equity trading strategies. Both the orig-

inal and the volatility-managed factors yield a positive annualised Sharpe ratio, on average.

The risk-adjusted performance is comparable across volatility estimates. For instance, the an-

nualised SR from the RV is 0.28 against 0.26 from SSV. The dispersion of SRs across equity
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strategies is also quite comparable across methods. For instance, the 97.5th percentile in the

distribution of SRs is 0.69 for the SSV against 0.81 from a six-month realised variance RV6.

To determine whether the SR from a given volatility-managed portfolio is statistically differ-

ent from its unmanaged counterpart, we follow Cederburg et al. (2020) and implement a block

bootstrap approach as proposed by Jobson and Korkie (1981); Ledoit and Wolf (2008). Table

1 reports the percentage – out of all 158 equity strategies – of SR differences that are positive

or negative, and are statistically significant at the 5% level. The results in Table 1 confirms

the existing evidence in the literature that volatility-managed portfolios do not systematically

outperform their original counterparts (see, e.g., Barroso and Detzel, 2021). For instance, RV

yields a significantly larger (smaller) SR compared to unmanaged portfolios for 6% (2.5%) of

the 158 equity trading strategies considered.

The percentage of higher and significant SRs slightly improves when using our SSV method

versus both RV and all other competing volatility forecasts. Nevertheless, the percentage of sig-

nificant and positive SRs tend to be quite similar across different volatility targeting estimates.

Table 1 also reveals that the gross performance across methods is quite comparable when look-

ing at the risk-adjusted returns with a focus on downside risk only. For instance, the average

Sortino ratio is 1.44, which is smaller than the 1.77 obtained from the RV, but economically

fairly close. Again, the Sortino ratios are fairly comparable across scaling methods.

Existing evidence on the performance of volatility-managed portfolios follows from a span-

ning regression approach of the form yσt = α+ βyt + εt. The object of interest is the intercept

α, that is a positive α implies that a combination of the original unmanaged factor and its

volatility-managed counterpart expands the mean-variance frontier compared to investing in

the original unscaled portfolio alone (see, e.g., Gibbons et al., 1989). The top panel in Table

2 reports the mean alpha (in %) across all the 158 equity strategies obtained from different

volatility target methods. Similar to the Sharpe ratios, we report the 2.5th, 25th, 50th, 75th,

and 97.5th percentile of the alphas across all rescaled portfolios, in addition to the mean value

across equity strategies. Volatility targeting based on realised variance RV achieves the highest

average gross α (1.68%), on par with the six-month realised variance RV6. This holds both
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for the unconditional and the real-time volatility implementation. The fraction of positive and

significant gross alphas – at a 5% level –, is also higher for the RV and RV6 methods.

Moreira and Muir (2017) link their spanning test results to appraisal ratios and utility gains

for investors. Both metrics can be red in the context of mean-variance portfolio choice. The

appraisal ratio for a given scaled strategy is AR = α̂/σ̂ε, where α̂ is the estimated gross alpha

from the spanning regression and σ̂ε the root mean squared error. The squared of the appraisal

ratio reflects the extent to which volatility management can be used to increase the slope of the

mean-variance frontier (see, Gibbons et al., 1989). The mid panel of Table 2 shows the results

for both unconditional and real-time volatility targeting. On average, the appraisal ratio from

the RV is higher (0.05) compared to our SSV (0.03). The cross-sectional distribution of the ARs

is quite symmetric, as the mean and median estimates tend to coincide.

Perhaps more interesting is the fact that the estimates of the α̂ from the spanning regressions

can be used to quantify the utility gain from volatility management. This is achieved by

comparing the certainty equivalent return (CER) for the investor who has access to both the

original and the volatility-managed factor against the investor who is constrained to the original

equity strategy only. We follow Cederburg et al. (2020); Barroso and Detzel (2021) and define

the difference in CER from the unmanaged and the scaled portfolios as

∆CER =
SR (z∗t )− SR (yt)

2γ
,

where SR (yt) is the Sharpe ratio of the unscaled portfolio and SR (z∗t ) is the Sharpe ratio of the

combined strategy zt = xσωt+x, with ωt = c∗

σ̂2
t|t−1

. The ex post optimal policy [xσ, x]′ = 1
γ
Σ̂−1µ̂

allocates a static weight xσ to the volatility-managed portfolio and a static x weight on the

original factor, based on the sample covariance Σ̂ and the sample mean µ̂ returns of the scaled

and unscaled portfolios. This policy is equivalent to dynamically adjust the exposure to the

original factor portfolio according to zt, so that the returns on the combined strategy can be

obtained as z∗t = zt · yt. The bottom panel of Table 2 reports ∆CER(%) for the unconditional

and real-time volatility targeting.
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We follow Cederburg et al. (2020); Wang and Yan (2021) and consider a risk aversion

coefficient equal to γ = 5. The ∆CER confirms that volatility targeting based on realised

variance does indeed expands ex post the mean-variance frontier relative to the other volatility

targeting methods, when no transaction costs or cost-mitigation strategies are considered. For

instance, the ∆CER from the RV is 18% versus 9% obtained from our SSV smoothing volatility

forecast. Interestingly, a slightly smoother estimate of realised volatility, i.e., RV6, produces a

higher ∆CER(%), both unconditionally and in real time.

3.3.2 Turnover and leverage. A standard volatility targeting strategy is built upon scal-

ing the original portfolio returns by c∗

σ̂2
t|t−1

. The often erratic nature of σ̂2
t|t−1 based on realised

volatility implies that volatility-managed portfolios are associated with high turnover and sig-

nificant time-varying leverage ωt. This is likely to cast doubt on the actual usefulness of

volatility targeting portfolios under common liquidity constraints (see Moreira and Muir, 2017;

Harvey et al., 2018; Bongaerts et al., 2020; Patton and Weller, 2020; Barroso and Detzel, 2021).

Table 3 shows the amount of portfolio turnover for different volatility targeting methods. The

portfolio turnover is calculated as the average absolute change of the leverage weights |∆w|

(see Moreira and Muir, 2017). We report the mean turnover as well as the 2.5th, 25th, 50th,

75th, and 97.5th percentile across the 158 equity strategies.

Clearly, our SSV method substantially reduces the portfolio turnover compared to all other

volatility forecasting methods. For instance, the turnover from the RV is 0.65 against a 0.05

from SSV, on average across equity strategies. Our SSV produces a lower turnover not only

on average, but for the full cross section of equity strategies. For instance, the 2.5th (97.5th)

percentile is 0.03 (0.06) for the SSV against a 0.51 (0.91) from RV. Perhaps not unexpectedly,

the six-month realised variance implies a lower turnover compared to RV. Nevertheless, our SSV

stands out in terms of portfolio stability, both within the context of unconditional or real-time

volatility targeting.

The middle panel of Table 3 also reports the average leverage implied by volatility targeting,

i.e., ωt = c∗

σ̂2
t|t−1

. The real-time implementation of the RV portfolio scaling implies a leverage that
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is almost twice as large as the one implied by SSV volatility targeting (0.73). Differences across

volatility methods are lower for the unconditional targeting. In addition, the bottom panel

shows that our smoothing volatility forecasting method significantly reduce liquidity demand,

that is increases the stability of ωt over time. For instance, the variability of leverage from

SSV is half (0.43) compared to RV (1.09). The leverage mitigation effect of SSV is even more

clear when looking at the real-time implementation; the standard deviation of wt is 0.27, on

average across equity strategies. This compares to 1.21, 1, and 0.85 from the RV, RV6 and RV

AR, respectively.

3.3.3 Main specification with transaction costs. Table 3 shows that alternative scaling

methods, such as HAR, Garch and RV AR indeed helps to stabilise volatility managing compared

to a standard RV. Yet, our smoothing volatility prediction SSV generates by the lowest and

most stable liquidity demand across all methods. For each equity factor we now consider the

costs of the leverage adjustment associated with volatility targeting. We follow Moreira and

Muir (2017); Wang and Yan (2021) and consider two alternative levels of transaction costs of

14 basis points (bps) of the notional value traded to implement volatility targeting (see, e.g.,

Frazzini et al., 2012) and a more conservative 50 basis points (see, e.g., Wang and Yan, 2021).

Table 4 reports the net-of-costs performance statistics for the managed factors. After 14

bps costs, the average SR for RV decreases from 0.23 to 0.17. With a more conservative level of

transaction costs, the average SR from RV turns to a negative -0.11 annualised. This is in stark

contrast of what we obtain by smoothing the volatility predictions; that is, our SSV generates

a remarkable stable SR of 0.25 and 0.23 after 14 and 50 basis points of notional trading costs,

respectively. Perhaps more importantly, only 10% of volatility-managed portfolios produce a

significantly lower SR compared to the unmanaged counterpart even with conservative 50 bps

of trading costs. This is in contrast to RV, for which 79% of Sharpe ratios are significantly lower

than the unscaled portfolios. Furthermore, when we consider 50 basis points of transaction

costs, the Sortino ratio from SSV is 1.38 versus -0.69 from RV, 0.85 from RV6 and 0.98 from a

Garch model, respectively.
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Table 5 reports the results for the spanning regression yσt = α + βyt + εt, with yσt the

returns on the volatility managed portfolio net of transaction costs and yσt its the original

equity strategy. The top panels report the estimated alphas (α̂ in %). When considering a

conservative notional trading cost of 50 basis points, our SSV volatility forecast generates a

positive alpha of 0.46% annualised. This is against a large and negative alpha from the RV, RV

AR, HAR, and SV methods. Consistent with Barroso and Detzel (2021), a longer-term six-month

estimate of the realised variance RV6 improves the volatility-managed alphas (0.12%). Perhaps

more importantly, our SSV method generates a significantly positive alpha for 21% of the equity

strategies in our sample, against, for instance, a 3%, 9%, and 14% of the strategies from the

RV, RV6 and Garch models, respectively.

The appraisal ratio AR reported in the middle panel of Table 5 confirms that SSV substan-

tially improves upon realised variance measures RV, especially when a conservative transaction

cost is factored in. For instance, with 50 basis points of trading costs the SSV is the only method

that can still generate a positive appraisal ratio. By comparison, the RV, RV6, Garch and RV

AR all generate significantly negative ARs. The bottom panels report the difference in the

certainty equivalent return between and investor that can access both the volatility-managed

and the original portfolio, and an investor constrained to invest in the original portfolio only.

The utility gain ∆CER(%) is highly in favour of our SSV volatility targeting. For instance, for

14 basis points of transaction costs, the second-best performing strategy is the RV6 rescaling

with a ∆CER of 9.56%, annualised, against a 14.5% from our SSV.

3.3.4 Transaction costs with leverage constraints. The results in Tables 4-5 show that

when conservative levels of transaction costs to implement volatility targeting are considered,

the performance of standard volatility targeting methods substantially deteriorates. Standard

volatility targeting strategies are not designed to mitigate transaction costs. Hence, we next

evaluate whether by reducing liquidity demand via capping leverage render volatility targeting

still profitable after costs. This approach does not necessarily aim at an optimal allocation

from the perspective of a mean-variance investor. Rather, it is a simple, yet effective, risk-
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management approach that aims to regularise the capital exposure to the original equity trading

strategy. We follow Moreira and Muir (2017); Cederburg et al. (2020); Barroso and Detzel

(2021); Wang and Yan (2021) and consider two different levels of leverage constraint; one that

cap the leverage at 1.5 times the original factor, and a second less restrictive that cap leverage

at 5 times the exposure to the original factor.

Table 6 reports the Sharpe and the Sortino ratios considering the same level of transaction

costs as in Section 3.3.3, namely 14 and 50 basis points of the notional trading exposure.

Panel A shows the results for a 500% leverage constraint. For a conservative 50 basis points

transaction costs our SSV produces the highest Sharpe and Sortino ratios among the volatility

targeting methods, on average across the 158 equity strategies. For instance, the SSV generates

a 0.23 Sharpe ratio on average against a dismal -0.10 annualised Sharpe ratio from the RV.

Compared to the unmanaged portfolios, the number of significantly higher SRs is also higher

for the SSV case. For instance, none of the rescaled portfolios with RV has a positive and

significant SR differential against 7% of the portfolios rescaled with SSV.

Panel B shows the results for a more restrictive leverage constraint, which forces the exposure

from volatility targeting no more than 1.5 times the original factor portfolio. Consistent with

Moreira and Muir (2017); Barroso and Detzel (2021), a tighter cap does indeed regularise

more the performance of volatility targeting across all competing methods. Nevertheless, the

performance of our SSV portfolio is quite stable across different levels of leverage constraints.

Interestingly, unlike the case without leverage constraints, the RV6 plus leverage cap proves to

be a quite competitive benchmark volatility targeting method.

Table 7 reports the results for the spanning regressions. The top panels report the estimated

alphas (α̂ in %). When considering a conservative notional trading cost of 50 basis points, our

SSV volatility forecast generates a positive alpha of 0.46% annualised. This is against a large

and negative alpha from the RV, RV AR, HAR, and SV methods. Perhaps more importantly,

our SSV method generates a significantly positive alpha for 21% of the equity strategies in

our sample, against, for instance, 3%, 17%, and 14% from the RV, RV6 and Garch models,

respectively.
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The appraisal ratio AR reported in the middle panel of Table 7 confirms that our SSV

substantially improves upon standard volatility targeting based on RV, especially when more

conservative transaction costs are factored in. For instance, with 50 basis points of trading

costs the SSV is the only method that can still generate a positive appraisal ratio together

with the RV6 long-term realised variance method. By comparison, the RV, Garch and RV AR all

generate significantly negative ARs. The bottom panels report the difference in the certainty

equivalent return between and investor that can access both the volatility-managed and the

original portfolio, and an investor constrained to invest in the original portfolio only. The

utility gain ∆CER(%) is highly in favour of our SSV volatility targeting. For instance, for 14

(50) basis points of transaction costs, our SSV method generates a 12% (8%) utility gain. This

compares to the 7% from the HAR with 14 basis points and 2.2% from the RV6 with 50 basis

points of transaction costs.

Table 8 reports the spanning regression results with a tighter leverage cap of 1.5. The results

are largely in line with Table 7. That is, the RV6 does indeed represents a challenging benchmark

for our SSV method when it comes to the estimated alphas. However, the ∆CER(%) from

the combination strategy is substantially in favour of our smoothing volatility targeting. For

instance, the ∆CER(%) from the SSV is 9.52% (13.8%) with 50 (14) basis points of notional

transaction costs, against a 4.5% (8/2%) from the RV6 volatility targeting.

4 Simulation study and inference properties

We now perform an extensive simulation study to evaluate the properties of our estimation

framework in a controlled setting. We compare our variational Bayes (VB) method against two

state-of-the-art Bayesian approaches used within the context of stochastic volatility models,

such as MCMC (see, Hosszejni and Kastner, 2021) and the global variational approximation

recently introduced by Chan and Yu (2022) (henceforth CY). Since neither of the benchmark

approaches entertain the possibility of arbitrarily smooth predictive densities, the baseline

comparison is based on the assumption that W = In+1 and the underlying latent state follows
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an autoregressive dynamics. This gives a cleaner comparison of the accuracy of our variational

estimates both in absolute terms and with respect to MCMC methods.

We compare each estimation method across N = 100 replications and for all different

specifications. We consider T = 600, consistent with the shortest time series in the empirical

application, c = 0, η2 = 0.1 and both low and high persistence ρ ∈ {0.70, 0.98}. Recall

that our estimation framework is agnostic on the structure of covariance of the approximating

density Σq(h) (see Proposition 2.1). However, to better understand the contribution of such

generalisation compared to existing methods, we also consider the performance of a more tight

parametrization with Σq(h) = τ 2Q−1, where τ 2 ∈ R+ and Q = Q(γ) (henceforth VBH). This

provides an homoschedastic representation of the approximating density in the spirit of Chan

and Yu (2022), which further simplifies the estimation of fq(h), τ
2, and γ.

Figure 7 reports the mean squared error and a measure of global estimation accuracy com-

pared to the MCMC. The mean squared error is measured as MSE = n−1
∑n

t=1(ht− ĥt)2, where

ht and ĥ are the simulated log-variance and its estimate, respectively. The average aggregated

accuracy of variatonal Bayes with respect to the MCMC approach is calculated as:

ACC = 100

{
1− 0.5

∫
|q(h)− p(h|y)| dh

}
%, (20)

where p(h|y) is the MCMC posterior and q(h) is the comparing variational Bayes approxima-

tion (see Wand and Ormerod, 2011). For the higher-persistence scenario with ρ = 0.98 (top

panels), the MCMC, CY, VB, and VBH provide statistically equivalent performances. The best

approximation to the MCMC is provided by our VB for ρ = 0.98.

Interestingly, for the lower-persistent scenario with ρ = 0.70 (bottom panels), the CY ap-

proach shows some difficulty in capturing the full extent of the dynamics of the latent stochastic

volatility process. This is also reflected in a generally lower accuracy in approximating the true

posterior density p(h|y) compared to the MCMC approach. The lower accuracy of the CY ap-

proach for ρ = 0.7 is due to a more restrictive dynamics of the latent state imposed by their

estimation setting. The approximation proposed by Chan et al. (2021) is based on the compu-
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tationally convenient assumption that the latent volatility state is a random walk. As a result,

it shows a substantially lower accuracy when ρ� 1.

Although neither the CY nor the MCMC approach entertain the possibility of smooth volatility

forecasts, for a full comparison of the estimation accuracy of our VB method we also evaluate the

performance of two alternative smoothing approaches, with W either a B-spline basis matrix

with knots equally spaced every 10 time points (henceforth VBS), or a Daubechies wavelet basis

matrix with l = 5 (henceforth VBW).6 Notice that both these modifications of W represent an

arbitrary intervention on the approximating density q (h). Compared to the baseline VB, the

smooth approximations have a lower accuracy in the estimate of the underlying AR(1) latent

process. Interestingly, similar to CY the global accuracy with respect to the MCMC deteriorates

as the persistence of the latent log-volatility process decreases.

The last column of Figure 7 shows that our variational Bayes is less computationally expen-

sive compared to both MCMC and CY methods. The gain in terms of computational cost holds

for both highly persistent latent stochastic volatility (top-right panel) and lower-persistent

volatility (bottom-right panel). More generally, our VB is almost an order of magnitude faster

than MCMC, on average. This intuitively represents an advantage when implementing real-time

predictions for more than a 150 equity strategies, as in our main empirical application.

Figure 7 suggests that the accuracy of our variational Bayes estimation framework dete-

riorates when smoothness on the latent state is imposed via the structure in W. We now

investigate more in details why that is the case by looking at the posterior estimates of the

parameters of interest {c, η2, ρ} for difference specifications of W. Figure 8 shows that by

imposing smoothness in the form of either B-spline or a Daubechies wavelet basis forces the

posterior estimates of ρ to be close to one, irrespective of the actual level of persistence in the

underlying latent process. Similarly, the estimates of the latent state variance η2 are smaller

for both VBS and VBW versus MCMC’s, and even more so when ρ = 0.7. Figure 8 confirms the

intuition that a lower accuracy of the posterior estimates of the latent state is due to a tight

6The choice of the equally spaced knots in the basis function and the l for the wavelet basis matrix is such
that both approaches give a similar degree of smoothness.
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regularization of the parameters implied by smoothing. The effect on the conditional variance

estimates is particularly striking.

Beside the possibility of introducing smoothness in the estimates, our variational Bayes

approach relax the assumption that the initial distribution q(h0) is independent on the trajec-

tory of the latent state q(h1), that is, we do not assume q(h) = q(h0)q(h1). Figure 9 shows

that this generalisation has a non-negligible impact on the posterior estimate of the latent

state, especially at the beginning on the sample. This is shown by comparing the global ac-

curacy for different slices of observations. The top (bottom) panels report the global accuracy

when ρ = 0.98 (ρ = 0.7). We report the estimation results for t ∈ (1, 10) in the left panel,

t ∈ (301, 310) in the middle panel, and t ∈ (591, 600) in the right panel. The simulation

results show that our variational Bayes approach maintains an optimal performance over all

the timeline. On the other hand, the accuracy of CY drops at the beginning of the time series.

This is due to the restrictive independence assumption between the initial condition and the

rest of the latent state trajectory q(h) = q(h0)q(h1).

5 Conclusion

Prior studies found that volatility-managed portfolios that increase leverage when volatility is

low produce statistically equivalent economic value compared to the original unscaled factors.

This contradicts conventional investment practice whereby risk mitigation should improve, or at

least not deteriorates, portfolio returns on a risk-adjusted basis. We show that such equivalence

is primarily due to the extreme leverage implied by volatility targeting. Indeed, volatility-

managed portfolios based on standard realised variance tend to have extremely levered exposure

to the original factors; such exposure is highly time varying. When factoring in moderate levels

of notional transaction costs the benefit of volatility-managing disappears.

To regularise turnover and mitigates the effect of transaction costs on volatility-managed

portfolios, we propose a novel inference scheme which allows to smooth the predictive density

of an otherwise standard stochastic volatility model. Specifically, we develop a novel varia-
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tional Bayes estimation method that flexibly encompasses different smoothness assumptions

irrespective of the underlying persistence of the latent state. Using a large set of 158 equity

strategies, we provide evidence that our smoothing volatility targeting approach has economic

value when conservative levels of transaction costs are considered. This has important implica-

tions for both the risk-adjusted returns and the mean-variance efficiency of volatility-managed

portfolios.
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Table 1: Volatility-managed portfolios and original equity strategies

This table compares the performance of volatility-managed and original portfolios (U) for the cross section of
158 equity strategies. For a given factor, the volatility-managed factor return in month t is based on a forecast
of the conditional variance. In addition to our smoothing volatility forecast (SSV), the variance forecasts are
from a simple AR(1) fitted on the realised variance (RV AR), an alternative six-month window to estimate the
longer-term realised variance (RV6), a long-memory model for volatility forecast as proposed by Corsi (2009)
(HAR), a standard AR(1) latent stochastic volatility model (SV), and a plain GARCH(1,1) specification (Garch).
For each volatility targeting method we report the mean annualised Sharpe ratio, Sortino ratio and maximum
drawdown (in %), as well as their 2.5th, 25th, 50th, 75th, and 97.5th percentiles in the cross section of equity
strategy. In addition, we report the fraction of volatility-managed portfolios that generate a Sharpe ratio
which is statistically different from the unscaled strategy (see, Ledoit and Wolf, 2008), and is either positive or
negative. The table reports both the performance measure with the scale parameter c∗ calibrated over the full
sample (unconditional targeting) or at each month t, c∗t (real time targeting).

Unconditional targeting Real time targeting

U RV RV6 RV AR HAR Garch SV SSV U RV RV6 RV AR HAR Garch SV SSV

SR

Mean 0.24 0.28 0.29 0.29 0.27 0.26 0.26 0.26 0.24 0.27 0.28 0.28 0.27 0.26 0.26 0.26
Percentiles
2.5 -0.12 -0.20 -0.22 -0.19 -0.20 -0.21 -0.20 -0.20 -0.12 -0.22 -0.23 -0.20 -0.20 -0.22 -0.21 -0.19
25 0.08 0.07 0.06 0.07 0.07 0.03 0.03 0.06 0.08 0.07 0.06 0.08 0.06 0.03 0.02 0.07
50 0.22 0.26 0.27 0.27 0.26 0.25 0.30 0.23 0.22 0.25 0.26 0.26 0.27 0.26 0.28 0.22
75 0.37 0.48 0.48 0.49 0.45 0.43 0.44 0.43 0.37 0.45 0.48 0.46 0.45 0.44 0.43 0.41
97.5 0.63 0.79 0.81 0.80 0.73 0.78 0.79 0.69 0.63 0.75 0.77 0.76 0.74 0.77 0.76 0.68

p< 0.05 & SR> 0 6.33 7.59 7.59 8.23 8.86 7.59 10.13 5.06 6.96 7.59 8.23 8.86 8.23 11.39
p< 0.05 & SR< 0 2.53 0.00 1.27 1.90 6.33 5.06 5.06 2.53 0.63 1.27 1.27 4.43 5.70 3.80

Sortino

Mean 1.44 1.77 1.84 1.79 1.60 1.56 1.61 1.55 1.44 1.74 1.85 1.75 1.61 1.59 1.61 1.51
Percentiles
2.5 -0.79 -1.06 -1.27 -1.06 -1.20 -1.21 -1.19 -1.12 -0.79 -1.23 -1.39 -1.22 -1.22 -1.23 -1.26 -1.11
25 0.49 0.46 0.44 0.50 0.39 0.17 0.18 0.35 0.49 0.48 0.41 0.47 0.38 0.16 0.13 0.44
50 1.38 1.59 1.66 1.62 1.55 1.67 1.72 1.43 1.38 1.58 1.63 1.61 1.55 1.57 1.67 1.42
75 2.17 2.90 2.95 2.85 2.69 2.63 2.53 2.40 2.17 2.80 2.90 2.81 2.66 2.62 2.54 2.39
97.5 3.50 5.77 5.03 5.47 4.48 4.77 4.64 4.18 3.50 4.84 4.75 4.73 4.55 4.73 4.62 4.09
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Table 2: Spanning regression results

This table reports the results from a spanning regression of the form yσt = α + βyt + εt, with yσt the returns
on the volatility managed portfolio and yσt its unscaled counterpart. We report the estimated alphas (α̂ in %),
the appraisal ratio AR = α̂/σ̂ε and the difference in the certainty equivalent return between and investor that
can access both the volatility-managed and the original portfolio, and an investor constrained to invest in the
original portfolio only ∆CER. In addition to our smoothing volatility forecast (SSV), the variance forecasts are
from a simple AR(1) fitted on the realised variance (RV AR), an alternative six-month window to estimate the
longer-term realised variance (RV6), a long-memory model for volatility forecast as proposed by Corsi (2009)
(HAR), a standard AR(1) latent stochastic volatility model (SV), and a plain GARCH(1,1) specification (Garch).
For each volatility targeting method we report the mean annualised Sharpe ratio, Sortino ratio and maximum
drawdown (in %), as well as their 2.5th, 25th, 50th, 75th, and 97.5th percentiles in the cross section of equity
strategy. In addition, we report the fraction of volatility-managed alphas that are significant and either positive
or negative. The table reports both the performance measure with the scale parameter c∗ calibrated over the
full sample (unconditional targeting) or at each month t, c∗t (real time targeting).

Unconditional targeting Real-time targeting

RV RV6 RV AR HAR Garch SV SSV RV RV6 RV AR HAR Garch SV SSV

α(%)

Mean 1.68 1.68 1.49 0.93 1.20 1.17 0.74 1.78 1.84 1.50 0.98 1.39 0.49 0.34
Percentiles
2.5 -1.87 -1.77 -1.59 -1.77 -2.51 -2.33 -1.62 -2.93 -1.83 -2.52 -1.45 -2.19 -0.96 -0.97
25 -0.04 -0.10 0.03 -0.13 -0.34 -0.25 -0.32 -0.05 -0.15 0.02 -0.14 -0.29 -0.12 -0.19
50 1.11 1.04 0.92 0.66 0.66 0.69 0.32 1.04 0.99 0.88 0.55 0.60 0.28 0.15
75 2.23 2.23 1.91 1.30 1.80 1.61 1.08 1.98 1.90 1.56 1.26 1.27 0.60 0.56
97.5 7.06 8.03 6.53 5.39 6.49 6.21 3.63 10.78 10.48 9.08 6.38 8.57 2.40 2.12

p< 0.05 & α > 0 36.08 40.51 34.18 26.58 32.28 31.65 31.01 32.91 34.18 33.54 28.48 32.28 29.75 27.22
p< 0.05 & α < 0 1.90 2.53 1.90 2.53 8.86 5.70 6.96 1.90 2.53 3.16 2.53 8.23 7.59 9.49

AR

Mean 0.05 0.05 0.05 0.04 0.03 0.04 0.03 0.04 0.05 0.05 0.04 0.03 0.03 0.03
Percentiles
2.5 -0.06 -0.06 -0.06 -0.06 -0.09 -0.08 -0.09 -0.06 -0.06 -0.07 -0.06 -0.08 -0.08 -0.09
25 0.00 -0.01 0.00 -0.01 -0.02 -0.02 -0.02 0.00 0.00 0.00 -0.01 -0.02 -0.02 -0.02
50 0.04 0.05 0.05 0.04 0.03 0.04 0.03 0.04 0.05 0.04 0.04 0.04 0.04 0.03
75 0.09 0.09 0.09 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.07 0.07 0.07 0.07
97.5 0.19 0.19 0.20 0.18 0.18 0.17 0.16 0.16 0.18 0.17 0.19 0.18 0.17 0.16

∆CER(%)

Mean 17.91 18.78 16.37 9.30 13.77 12.55 9.10 14.52 16.77 12.49 6.77 11.99 3.77 4.03
Percentiles
2.5 -5.93 -4.56 -4.65 -3.82 -7.75 -6.83 -6.10 -23.07 -7.84 -10.55 -9.91 -10.98 -37.33 -34.61
25 0.06 0.52 0.35 0.00 -0.36 -0.03 -0.75 5.02 4.97 3.79 2.75 3.45 0.65 1.10
50 5.69 5.84 5.29 2.85 3.12 3.47 1.83 11.25 10.87 11.26 9.15 9.33 6.44 6.33
75 19.86 17.65 16.26 10.81 12.82 10.34 7.13 22.37 24.68 21.10 16.76 13.78 11.84 11.35
97.5 91.73 65.32 80.30 40.51 49.43 47.05 26.22 75.94 80.12 62.56 38.23 41.86 29.19 22.99
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Table 3: Portfolios turnover and leverage dispersion

This table reports a set of descriptive statistics for the volatility-managed portfolio turnover and leverage.
The portfolio turnover is calculated as the average absolute change in monthly volatility-managing weights
|∆w| (see Moreira and Muir, 2017). The leverage is calculated as ωt = c∗

σ̂2
t|t−1

. In addition to our smoothing

volatility forecast (SSV), the variance forecasts are from a simple AR(1) fitted on the realised variance (RV AR),
an alternative six-month window to estimate the longer-term realised variance (RV6), a long-memory model
for volatility forecast as proposed by Corsi (2009) (HAR), a standard AR(1) latent stochastic volatility model
(SV), and a plain GARCH(1,1) specification (Garch). For each volatility targeting method we report the mean
annualised Sharpe ratio, Sortino ratio and maximum drawdown (in %), as well as their 2.5th, 25th, 50th, 75th,
and 97.5th percentiles in the cross section of equity strategy. The table reports both the performance measure
with the scale parameter c∗ calibrated over the full sample (unconditional targeting) or at each month t, c∗t
(real time targeting).

Unconditional targeting Real time targeting

RV RV6 RV AR HAR Garch SV SSV RV RV6 RV AR HAR Garch SV SSV

Turnover

Mean 0.65 0.14 0.48 0.23 0.16 0.21 0.05 69.98 27.22 50.05 22.17 15.66 8.99 2.66
Percentiles
2.5 0.51 0.11 0.32 0.13 0.05 0.10 0.03 42.08 16.20 29.49 12.82 4.59 4.97 1.36
25 0.57 0.12 0.41 0.20 0.13 0.17 0.04 51.17 19.23 37.26 19.26 10.59 7.64 2.34
50 0.62 0.14 0.45 0.23 0.15 0.20 0.05 59.43 22.04 40.98 21.80 14.09 8.35 2.57
75 0.69 0.16 0.54 0.26 0.19 0.24 0.05 86.49 34.09 64.53 24.94 19.25 10.14 2.92
97.5 0.91 0.22 0.71 0.30 0.29 0.33 0.06 128.35 55.72 98.16 33.43 34.72 14.38 4.21

Average leverage

Mean 1.24 1.30 1.30 1.23 1.24 1.26 1.22 1.33 1.36 1.34 1.22 1.18 0.56 0.73
Percentiles
2.5 1.00 1.08 1.07 1.06 1.00 1.04 1.02 0.83 0.89 0.91 0.86 0.76 0.33 0.53
25 1.15 1.20 1.21 1.15 1.15 1.18 1.15 1.00 1.06 1.06 1.01 0.93 0.47 0.67
50 1.22 1.29 1.28 1.22 1.22 1.24 1.20 1.19 1.22 1.19 1.14 1.08 0.56 0.73
75 1.30 1.36 1.35 1.29 1.31 1.33 1.26 1.58 1.63 1.57 1.39 1.38 0.62 0.79
97.5 1.59 1.67 1.65 1.53 1.55 1.56 1.45 2.22 2.21 2.22 1.95 1.93 0.79 0.92

Leverage dispersion

Mean 1.09 0.92 0.79 0.51 0.72 0.72 0.43 1.21 1.00 0.85 0.48 0.70 0.32 0.27
Percentiles
2.5 0.71 0.55 0.41 0.29 0.33 0.27 0.22 0.64 0.49 0.38 0.28 0.26 0.13 0.14
25 0.92 0.76 0.62 0.44 0.56 0.56 0.36 0.82 0.68 0.58 0.40 0.48 0.24 0.23
50 1.02 0.87 0.74 0.50 0.66 0.64 0.41 0.97 0.80 0.66 0.46 0.58 0.30 0.26
75 1.22 1.04 0.94 0.55 0.87 0.85 0.49 1.62 1.18 1.10 0.55 0.86 0.37 0.32
97.5 1.71 1.39 1.34 0.80 1.38 1.28 0.70 2.47 2.03 1.82 0.82 1.46 0.61 0.40
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Table 4: Volatility-managed portfolios with transaction costs

This table compares the performance of volatility-managed and original portfolios (U) for the cross section of
158 equity strategies. For a given factor, the volatility-managed factor return in month t is based on a forecast
of the conditional variance. In addition to our smoothing volatility forecast (SSV), the variance forecasts are
from a simple AR(1) fitted on the realised variance (RV AR), an alternative six-month window to estimate the
longer-term realised variance (RV6), a long-memory model for volatility forecast as proposed by Corsi (2009)
(HAR), a standard AR(1) latent stochastic volatility model (SV), and a plain GARCH(1,1) specification (Garch).
For each volatility targeting method we report the mean annualised Sharpe ratio, Sortino ratio and maximum
drawdown (in %), as well as their 2.5th, 25th, 50th, 75th, and 97.5th percentiles in the cross section of equity
strategy. In addition, we report the fraction of volatility-managed portfolios that generate a Sharpe ratio
which is statistically different from the unscaled strategy (see, Ledoit and Wolf, 2008), and is either positive or
negative. The table reports the results for two levels of transaction costs, 14 and 50 basis points of the notional
value traded to implement volatility targeting.

14 basis points 50 basis points

U RV RV6 RV AR HAR Garch SV SSV U RV RV6 RV AR HAR Garch SV SSV

SR

Mean 0.24 0.17 0.25 0.21 0.23 0.23 0.23 0.25 0.24 -0.11 0.14 0.01 0.13 0.16 0.14 0.23
Percentiles
2.5 -0.12 -0.32 -0.26 -0.28 -0.26 -0.23 -0.24 -0.20 -0.12 -0.65 -0.39 -0.52 -0.40 -0.31 -0.32 -0.22
25 0.08 -0.03 0.02 0.00 0.02 0.00 -0.01 0.05 0.08 -0.30 -0.09 -0.19 -0.08 -0.06 -0.09 0.03
50 0.22 0.16 0.23 0.20 0.21 0.23 0.26 0.23 0.22 -0.14 0.13 0.00 0.11 0.16 0.16 0.21
75 0.37 0.36 0.43 0.41 0.40 0.40 0.39 0.42 0.37 0.05 0.32 0.17 0.27 0.33 0.30 0.39
97.5 0.63 0.69 0.77 0.72 0.69 0.76 0.76 0.68 0.63 0.48 0.66 0.54 0.59 0.71 0.66 0.66

p< 0.05 & SR> 0 1.90 4.43 3.80 5.06 6.96 6.96 8.86 0.00 1.27 0.00 1.90 3.80 1.27 6.96
p< 0.05 & SR< 0 15.19 5.70 10.76 6.96 12.03 12.66 5.70 79.11 27.22 65.82 36.71 27.22 36.08 10.13

Sortino

Mean 1.44 1.08 1.52 1.30 1.35 1.40 1.40 1.50 1.44 -0.69 0.85 0.04 0.75 0.98 0.86 1.38
Percentiles
2.5 -0.79 -1.92 -1.55 -1.62 -1.52 -1.32 -1.43 -1.15 -0.79 -4.16 -2.29 -3.05 -2.33 -1.77 -1.91 -1.27
25 0.48 -0.21 0.13 -0.01 0.12 0.03 -0.05 0.32 0.48 -1.82 -0.58 -1.22 -0.50 -0.39 -0.53 0.21
50 1.36 0.91 1.40 1.15 1.27 1.48 1.52 1.37 1.36 -0.91 0.78 0.02 0.68 1.01 1.01 1.25
75 2.16 2.21 2.60 2.30 2.37 2.41 2.30 2.34 2.16 0.32 1.84 1.05 1.62 1.98 1.75 2.21
97.5 3.49 5.14 4.87 5.01 4.17 4.65 4.41 4.14 3.49 3.55 4.32 3.85 3.62 4.43 3.84 4.04
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Table 5: Spanning regression results with transaction costs

This table reports the results from a spanning regression of the form yσt = α + βyt + εt, with yσt the returns
on the volatility managed portfolio and yσt its unscaled counterpart. We report the estimated alphas (α̂ in %),
the appraisal ratio AR = α̂/σ̂ε and the difference in the certainty equivalent return between and investor that
can access both the volatility-managed and the original portfolio, and an investor constrained to invest in the
original portfolio only ∆CER. In addition to our smoothing volatility forecast (SSV), the variance forecasts
are from a simple AR(1) fitted on the realised variance (RV AR), an alternative six-month window to estimate
the longer-term realised variance (RV6), a long-memory model for volatility forecast as proposed by Corsi
(2009) (HAR), a standard AR(1) latent stochastic volatility model (SV), and a plain GARCH(1,1) specification
(Garch). For each volatility targeting method we report the mean annualised Sharpe ratio, Sortino ratio and
maximum drawdown (in %), as well as their 2.5th, 25th, 50th, 75th, and 97.5th percentiles in the cross section
of equity strategy. In addition, we report the fraction of volatility-managed alphas that are significant and
either positive or negative. The table reports the results for two levels of transaction costs, 14 and 50 basis
points of the notional value traded to implement volatility targeting.

14 basis points 50 basis points

RV RV6 RV AR HAR Garch SV SSV RV RV6 RV AR HAR Garch SV SSV

α(%)

Mean 0.58 1.22 0.68 0.51 0.92 0.82 0.66 -2.23 0.12 -1.39 -0.47 0.23 -0.08 0.46
Percentiles
2.5 -3.00 -2.50 -2.59 -2.18 -2.73 -2.76 -1.71 -6.30 -3.88 -5.42 -3.11 -3.49 -3.92 -1.92
25 -1.02 -0.46 -0.69 -0.49 -0.62 -0.62 -0.40 -3.65 -1.37 -2.52 -1.42 -1.34 -1.44 -0.62
50 0.13 0.76 0.18 0.26 0.41 0.34 0.25 -2.61 -0.27 -1.71 -0.73 -0.29 -0.46 0.06
75 1.17 1.67 1.04 0.87 1.47 1.25 1.01 -1.66 0.65 -0.92 -0.01 0.86 0.46 0.83
97.5 5.62 6.74 5.39 4.92 6.04 5.66 3.53 2.39 5.16 2.58 3.91 5.01 4.29 3.30

p< 0.05 & α > 0 11.39 26.58 13.92 15.19 28.48 20.25 28.48 3.16 8.86 4.43 6.33 14.56 8.23 21.52
p< 0.05 & α < 0 14.56 7.59 12.03 9.49 13.92 13.29 10.13 70.89 23.42 60.13 37.34 23.42 32.28 15.82

AR (%)

Mean 0.60 3.21 1.22 1.49 2.19 1.80 2.50 -10.23 -1.29 -8.30 -4.31 -1.01 -2.70 1.04
Percentiles
2.5 -10.51 -8.26 -10.20 -8.60 -9.76 -9.67 -9.72 -25.05 -14.14 -21.95 -16.84 -13.79 -15.14 -11.17
25 -4.24 -1.76 -3.90 -3.39 -2.79 -3.54 -2.75 -15.13 -6.40 -13.33 -8.92 -6.53 -9.02 -4.55
50 0.43 2.85 1.01 1.83 1.83 2.06 2.17 -10.33 -0.99 -8.44 -4.89 -1.88 -2.76 0.52
75 4.82 6.97 5.03 4.70 6.97 6.15 7.55 -5.78 2.82 -4.16 -0.05 4.34 2.27 6.09
97.5 16.35 16.31 16.92 15.75 17.21 16.08 15.43 8.14 12.20 9.53 12.18 13.48 12.50 14.43

∆CER(%)

Mean 2.85 9.56 9.05 9.10 6.35 3.57 14.50 -14.50 -0.31 -9.70 -2.26 0.65 -3.75 9.47
Percentiles
2.5 -17.02 -7.83 -9.22 -6.10 -9.77 -9.42 -6.53 -49.06 -18.03 -31.85 -15.63 -20.97 -21.88 -8.28
25 -3.33 -0.79 -1.94 -1.56 -1.47 -1.68 -0.95 -22.35 -5.21 -15.50 -7.62 -6.03 -7.31 -2.21
50 0.04 3.14 0.07 0.92 1.64 1.13 1.24 -8.72 -0.62 -6.79 -3.25 -0.54 -1.90 0.14
75 5.28 12.63 7.40 4.99 10.24 7.00 6.10 0.45 1.51 -0.91 -0.01 4.30 1.04 4.52
97.5 43.98 59.18 59.85 29.98 46.04 34.18 25.00 19.55 34.38 20.69 21.91 38.48 18.34 22.41
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Table 6: Volatility-managed portfolios with leverage constraints

This table compares the performance of volatility-managed and original portfolios (U) for the cross section
of 158 equity strategies. For a given factor, the volatility-managed factor return in month t is based on a
forecast of the conditional variance. The volatility-managed weights are capped so that the maximum leverage
attainable is 500% (panel A) or 50% (panel B) of the original factor exposure. In addition to our smoothing
volatility forecast (SSV), the variance forecasts are from a simple AR(1) fitted on the realised variance (RV AR),
an alternative six-month window to estimate the longer-term realised variance (RV6), a long-memory model
for volatility forecast as proposed by Corsi (2009) (HAR), a standard AR(1) latent stochastic volatility model
(SV), and a plain GARCH(1,1) specification (Garch). For each volatility targeting method we report the mean
annualised Sharpe ratio, Sortino ratio and maximum drawdown (in %), as well as their 2.5th, 25th, 50th, 75th,
and 97.5th percentiles in the cross section of equity strategy. In addition, we report the fraction of volatility-
managed portfolios that generate a Sharpe ratio which is statistically different from the unscaled strategy (see,
Ledoit and Wolf, 2008), and is either positive or negative. The table reports the results for two levels of
transaction costs, 14 and 50 basis points of the notional value traded to implement volatility targeting.

Panel A: 500% leverage constraint

14 basis points 50 basis points

U RV RV6 RV AR HAR Garch SV SSV U RV RV6 RV AR HAR Garch SV SSV

SR

Mean 0.24 0.17 0.27 0.21 0.23 0.23 0.23 0.25 0.24 -0.10 0.21 0.01 0.13 0.16 0.14 0.23
Percentiles
2.5 -0.12 -0.32 -0.25 -0.28 -0.26 -0.23 -0.24 -0.20 -0.12 -0.66 -0.34 -0.52 -0.40 -0.30 -0.32 -0.22
25 0.08 -0.03 0.05 0.00 0.02 0.00 -0.01 0.05 0.08 -0.29 -0.02 -0.19 -0.08 -0.06 -0.09 0.03
50 0.22 0.15 0.24 0.20 0.21 0.23 0.26 0.23 0.22 -0.11 0.20 0.00 0.11 0.17 0.16 0.21
75 0.37 0.36 0.47 0.41 0.40 0.40 0.39 0.42 0.37 0.06 0.40 0.17 0.27 0.34 0.30 0.39
97.5 0.63 0.73 0.82 0.74 0.70 0.76 0.75 0.68 0.63 0.53 0.75 0.57 0.62 0.71 0.66 0.66

p< 0.05 & SR> 0 1.90 6.33 3.80 3.80 7.59 6.96 8.86 0.00 3.80 0.00 1.27 3.80 1.90 6.96
p< 0.05 & SR< 0 15.19 2.53 12.03 6.33 12.66 12.66 5.70 75.95 12.66 65.82 37.97 28.48 36.08 11.39

Sortino

Mean 1.44 1.11 1.68 1.31 1.36 1.40 1.39 1.50 1.44 -0.61 1.29 0.05 0.75 0.99 0.86 1.38
Percentiles
2.5 -0.79 -1.92 -1.40 -1.61 -1.52 -1.33 -1.44 -1.15 -0.79 -4.16 -1.85 -3.05 -2.33 -1.75 -1.93 -1.27
25 0.48 -0.20 0.31 -0.02 0.12 0.03 -0.05 0.32 0.48 -1.78 -0.09 -1.22 -0.47 -0.39 -0.53 0.21
50 1.36 0.88 1.48 1.16 1.27 1.49 1.52 1.37 1.36 -0.77 1.11 0.02 0.68 1.07 1.05 1.25
75 2.16 2.21 2.76 2.30 2.36 2.37 2.30 2.34 2.16 0.36 2.31 1.05 1.59 2.00 1.75 2.21
97.5 3.49 5.22 4.88 5.02 4.31 4.64 4.35 4.14 3.49 3.75 4.54 3.86 3.87 4.42 3.83 4.04

Panel B: 50% leverage constraint

14 basis points 50 basis points

U RV RV6 RV AR HAR Garch SV SSV U RV RV6 RV AR HAR Garch SV SSV

SR

Mean 0.24 0.22 0.28 0.24 0.24 0.25 0.25 0.25 0.24 0.04 0.24 0.11 0.16 0.20 0.19 0.24
Percentiles
2.5 -0.12 -0.30 -0.21 -0.26 -0.24 -0.22 -0.21 -0.19 -0.12 -0.50 -0.28 -0.40 -0.34 -0.26 -0.27 -0.20
25 0.08 0.01 0.07 0.02 0.03 0.02 0.01 0.06 0.08 -0.15 0.03 -0.09 -0.03 -0.03 -0.04 0.05
50 0.22 0.19 0.26 0.20 0.22 0.24 0.24 0.21 0.22 0.04 0.23 0.09 0.14 0.19 0.19 0.20
75 0.37 0.40 0.46 0.41 0.41 0.43 0.42 0.42 0.37 0.23 0.42 0.28 0.33 0.37 0.35 0.41
97.5 0.63 0.74 0.81 0.72 0.70 0.71 0.73 0.68 0.63 0.59 0.77 0.60 0.62 0.67 0.67 0.66

p< 0.05 & SR> 0 1.90 6.33 2.53 3.80 7.59 6.96 4.43 0.63 5.06 1.27 1.90 4.43 4.43 4.43
p< 0.05 & SR< 0 10.13 1.90 5.70 5.70 8.86 8.23 4.43 55.06 4.43 43.67 25.95 20.25 25.32 6.96

Sortino

Mean 1.44 1.34 1.66 1.42 1.42 1.45 1.44 1.48 1.44 0.28 1.44 0.66 0.97 1.17 1.10 1.40
Percentiles
2.5 -0.79 -1.67 -1.27 -1.46 -1.35 -1.27 -1.25 -1.07 -0.79 -2.99 -1.55 -2.30 -1.91 -1.48 -1.60 -1.18
25 0.48 0.06 0.41 0.16 0.17 0.14 0.08 0.34 0.48 -0.95 0.18 -0.57 -0.16 -0.15 -0.24 0.26
50 1.36 1.19 1.55 1.21 1.33 1.42 1.46 1.27 1.36 0.28 1.37 0.53 0.84 1.21 1.17 1.21
75 2.16 2.40 2.66 2.49 2.43 2.41 2.34 2.41 2.16 1.46 2.47 1.73 1.95 2.12 1.98 2.31
97.5 3.49 4.73 4.74 4.55 4.19 4.42 4.37 4.13 3.49 4.06 4.54 3.99 3.80 4.21 4.05 4.06
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Table 7: Spanning regression results with x5 leverage constraints

This table reports the results from a spanning regression of the form yσt = α+βyt+εt, with yσt the returns on the
volatility managed portfolio and yσt its unscaled counterpart. The volatility-managed weights are capped so that
the maximum leverage attainable is 500% of the original factor exposure. We report the estimated alphas (α̂ in
%), the appraisal ratio AR = α̂/σ̂ε and the difference in the certainty equivalent return between and investor
that can access both the volatility-managed and the original portfolio, and an investor constrained to invest in
the original portfolio only ∆CER. In addition to our smoothing volatility forecast (SSV), the variance forecasts
are from a simple AR(1) fitted on the realised variance (RV AR), an alternative six-month window to estimate
the longer-term realised variance (RV6), a long-memory model for volatility forecast as proposed by Corsi
(2009) (HAR), a standard AR(1) latent stochastic volatility model (SV), and a plain GARCH(1,1) specification
(Garch). For each volatility targeting method we report the mean annualised Sharpe ratio, Sortino ratio and
maximum drawdown (in %), as well as their 2.5th, 25th, 50th, 75th, and 97.5th percentiles in the cross section
of equity strategy. In addition, we report the fraction of volatility-managed alphas that are significant and
either positive or negative. The table reports the results for two levels of transaction costs, 14 and 50 basis
points of the notional value traded to implement volatility targeting.

14 basis points 50 basis points

RV RV3 RV AR HAR Garch SV SV5 RV RV3 RV AR HAR Garch SV SV5

α(%)

Mean 0.56 1.39 0.67 0.54 0.91 0.79 0.66 -2.08 0.78 -1.38 -0.45 0.24 -0.08 0.46
Percentiles
2.5 -2.92 -2.11 -2.60 -2.16 -2.72 -2.85 -1.71 -5.80 -2.76 -5.36 -3.11 -3.43 -3.89 -1.92
25 -0.97 -0.31 -0.69 -0.49 -0.54 -0.57 -0.40 -3.48 -0.86 -2.50 -1.42 -1.24 -1.44 -0.62
50 0.11 0.84 0.18 0.30 0.40 0.33 0.25 -2.51 0.32 -1.69 -0.71 -0.28 -0.47 0.06
75 1.15 1.92 1.04 0.89 1.47 1.18 1.01 -1.49 1.25 -0.89 -0.01 0.86 0.46 0.83
97.5 5.52 7.57 5.39 4.96 6.05 5.66 3.53 2.51 6.71 2.63 3.91 5.02 4.34 3.30

p< 0.05 & α > 0 12.03 30.38 13.92 15.82 27.85 20.89 28.48 3.16 17.72 4.43 6.96 13.92 8.86 21.52
p< 0.05 & α < 0 15.19 3.16 12.03 8.86 13.29 13.92 10.13 70.25 13.92 59.49 36.08 23.42 32.28 15.82

AR(%)

Mean 0.01 0.04 0.01 0.02 0.02 0.02 0.02 -0.10 0.01 -0.08 -0.04 -0.01 -0.03 0.01
Percentiles
2.5 -0.11 -0.07 -0.10 -0.09 -0.10 -0.10 -0.10 -0.25 -0.10 -0.22 -0.17 -0.14 -0.15 -0.11
25 -0.04 -0.02 -0.04 -0.03 -0.03 -0.03 -0.03 -0.15 -0.04 -0.13 -0.09 -0.07 -0.09 -0.05
50 0.00 0.04 0.01 0.02 0.02 0.02 0.02 -0.10 0.02 -0.08 -0.05 -0.02 -0.03 0.01
75 0.05 0.08 0.05 0.05 0.07 0.06 0.08 -0.06 0.05 -0.04 0.00 0.04 0.02 0.06
97.5 0.17 0.19 0.17 0.16 0.17 0.16 0.15 0.09 0.17 0.10 0.12 0.13 0.13 0.14

∆CER(%)

Mean 1.41 3.52 6.68 7.16 2.97 0.77 11.99 -4.53 2.24 -2.40 1.85 1.67 -1.16 8.26
Percentiles
2.5 -1.01 -0.17 -0.62 -0.08 -0.49 -0.24 -0.01 -6.80 -0.61 -4.22 -0.35 -0.89 -0.82 -0.01
25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.25 0.00 0.00 0.00 0.00 0.00 0.00
50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
75 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
97.5 18.67 35.18 34.75 28.94 23.41 18.11 16.31 0.96 28.34 4.18 20.08 16.93 9.45 14.89
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Table 8: Spanning regression results with x1.5 leverage constraints

This table reports the results from a spanning regression of the form yσt = α+ βyt + εt, with yσt the returns on
the volatility managed portfolio and yσt its unscaled counterpart. The volatility-managed weights are capped so
that the maximum leverage attainable is 50% of the original factor exposure. We report the estimated alphas (α̂
in %), the appraisal ratio AR = α̂/σ̂ε and the difference in the certainty equivalent return between and investor
that can access both the volatility-managed and the original portfolio, and an investor constrained to invest in
the original portfolio only ∆CER. In addition to our smoothing volatility forecast (SSV), the variance forecasts
are from a simple AR(1) fitted on the realised variance (RV AR), an alternative six-month window to estimate
the longer-term realised variance (RV6), a long-memory model for volatility forecast as proposed by Corsi
(2009) (HAR), a standard AR(1) latent stochastic volatility model (SV), and a plain GARCH(1,1) specification
(Garch). For each volatility targeting method we report the mean annualised Sharpe ratio, Sortino ratio and
maximum drawdown (in %), as well as their 2.5th, 25th, 50th, 75th, and 97.5th percentiles in the cross section
of equity strategy. In addition, we report the fraction of volatility-managed alphas that are significant and
either positive or negative. The table reports the results for two levels of transaction costs, 14 and 50 basis
points of the notional value traded to implement volatility targeting.

14 basis points 50 basis points

RV RV3 RV AR HAR Garch SV SV5 RV RV3 RV AR HAR Garch SV SV5

α(%)

Mean 0.47 0.88 0.50 0.48 0.62 0.58 0.44 -0.75 0.61 -0.51 -0.19 0.23 0.10 0.31
Percentiles
2.5 -1.58 -1.04 -1.44 -1.30 -1.95 -1.90 -1.48 -2.86 -1.34 -2.51 -1.98 -2.29 -2.36 -1.61
25 -0.44 -0.12 -0.42 -0.35 -0.20 -0.31 -0.31 -1.73 -0.41 -1.44 -1.03 -0.72 -0.81 -0.44
50 0.24 0.60 0.26 0.25 0.37 0.32 0.25 -1.00 0.31 -0.77 -0.41 -0.05 -0.14 0.10
75 0.95 1.24 0.94 0.83 1.10 0.93 0.83 -0.24 0.99 -0.07 0.18 0.78 0.48 0.70
97.5 3.34 4.34 3.39 3.57 4.39 4.21 2.82 2.11 4.02 2.35 2.94 3.88 3.62 2.68

p< 0.05 & α > 0 15.82 28.48 15.82 17.09 25.32 19.62 27.22 5.70 18.99 6.33 8.23 15.82 12.66 20.25
p< 0.05 & α < 0 10.76 1.90 6.96 5.70 11.39 8.23 8.23 48.10 6.33 41.77 24.68 20.25 24.68 12.66

AR(%)

Mean 0.02 0.04 0.02 0.02 0.03 0.02 0.02 -0.06 0.02 -0.05 -0.02 0.00 -0.01 0.01
Percentiles
2.5 -0.10 -0.06 -0.09 -0.07 -0.09 -0.09 -0.09 -0.20 -0.09 -0.18 -0.14 -0.12 -0.13 -0.11
25 -0.03 -0.01 -0.03 -0.02 -0.03 -0.03 -0.03 -0.11 -0.02 -0.09 -0.07 -0.06 -0.06 -0.04
50 0.02 0.04 0.02 0.02 0.02 0.02 0.02 -0.07 0.02 -0.05 -0.03 0.00 -0.01 0.01
75 0.05 0.07 0.05 0.05 0.07 0.06 0.07 -0.01 0.06 0.00 0.01 0.05 0.03 0.06
97.5 0.15 0.19 0.15 0.16 0.17 0.17 0.15 0.10 0.17 0.11 0.13 0.15 0.15 0.14

∆CER(%)

Mean 3.52 8.24 9.00 9.20 5.75 3.21 13.84 -9.14 4.96 -5.50 1.07 2.52 -1.26 9.52
Percentiles
2.5 -7.81 -1.95 -3.83 -4.48 -5.95 -6.19 -4.99 -28.64 -4.98 -19.61 -10.43 -10.47 -12.08 -7.00
25 -0.13 0.00 0.00 0.00 0.00 0.00 0.00 -9.54 -0.01 -6.19 -1.82 -0.12 -0.46 0.00
50 0.00 0.03 0.00 0.00 0.00 0.00 0.00 -0.82 0.00 -0.04 0.00 0.00 0.00 0.00
75 1.34 6.55 1.98 2.55 4.52 3.08 3.25 0.00 2.89 0.00 0.00 1.51 0.02 2.35
97.5 43.98 60.33 65.16 37.37 46.04 32.86 24.00 10.39 46.72 15.88 26.67 38.48 18.34 21.78
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Figure 1: Volatility targeting and portfolio leverage

The figure reports the leverage implied by rescaling the original factor portfolios by the previous month’s
realised variance. The latter is estimated based on daily squared returns on the same factor. The left panel
reports the rescaling over time for three common factor portfolios, namely the returns on the market in excess
of the risk-free rate, the size portfolio (see, e.g., Fama and French, 1996), and the classic momentum strategy
as proposed by Jegadeesh and Titman (1993). The right panel reports the cross-sectional distribution of the
mean and median leverage weights across all 157 factor portfolios investigated in the main empirical analysis.
In addition to the mean and median, the figure also reports the value of the top 10% and top 1% highest
leverage weight across factor portfolios.

(a) Realised variance targeting (b) Leverage distribution (c) Market volatility targeting
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Figure 2: Shape of the posterior volatility estimates for different W.

(a) Identity matrix (b) Daubechies wavelet basis matrix with l = 4

(c) Identity + Daubechies wavelet basis matrix (d) B-spline basis matrix with kn = 20 and dg = 3
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Figure 3: Modeling smoothing volatility forecasts

The form of W in case of wavelet basis functions (top) and B-spline basis functions (bottom). Right panels
correspond to columns of the matrix W. The B-spline basis functions is a sequence of piecewise polynomial
functions of a given degree, in this case dg = 3. The locations of the pieces are determined by the knots,
here we assume kn = 20 equally spaced knots. The functions that compose the wavelet basis matrix W are
constructed over equally spaced grids on [0, n] of length R, where R is called resolution and it is equal to 2l−1,
where l defines the level (and in our case the resulting smoothness). The number of functions at level l is then
equal to R and they are defined as dilatation and/or shift of a mother function. In our case the level is l = 5
and therefore the resolution is R = 16.

(a) Daubechies wavelet basis matrix (b) Daubechies wavelet basis functions

(c) B-spline basis matrix with kn = 20 and dg = 3 (d) B-spline basis functions
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Figure 4: Testing the significance of volatility-managed returns

The plot reports the distribution of the volatility-managed portfolio returns implied by the non-smooth SV (red
area) and smooth SSV (blue area) stochastic volatility models. We report a snapshot of the returns distribution
on a given month for the market portfolio. The realised volatility-managed returns from the unmanaged and
the RV are highlighted each month as white and green circles, respectively. The distribution of the volatility-
managed portfolios for the SV and SSV is generated based on the predictive density of the corresponding model
specifications (see Section 2.1.2 for more details).

(a) MKT October 1995 (b) MKT March 2009

(c) Momentum factor over 2008/2009

44



Figure 5: Smoothing vs alternative volatility targeting for the full sample

This figure reports the probability pi = p+i − p
−
i (see Eq.19) for the cross section of 158 equity trading

strategy investigated in the main empirical application. The left panel compares our SSV versus U and RV. The
middle panel compares our SSV against two alternative smoothing volatility forecasts used in the literature,
i.e., RV6 and RV AR. The right panel compares out SSV against two popular volatility forecasting methods,
such as HAR and Garch.

(a) ySSVt vs yUt , y
RV
t (b) ySSVt vs yRV6t , yRVARt (c) ySSVt vs yHARt , yGarcht

Figure 6: Smoothing vs alternative volatility targeting over time

This figure reports the probability pt = p+t − p−t (see Eq.19) for the sample period under investigation. The
left panel compares our SSV versus U and RV. The middle panel compares our SSV against two alternative
smoothing volatility forecasts used in the literature, i.e., RV6 and RV AR. The right panel compares out SSV
against two popular volatility forecasting methods, such as HAR and Garch.

(a) ySSVt vs yUt , y
RV
t (b) ySSVt vs yRV6t , yRVARt (c) ySSVt vs yHARt , yGarcht
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Figure 7: Accuracy of the latent volatility estimates

This figure reports the mean squared error and a measure of global estimation accuracy compared to the
MCMC. The mean squared error is measured as MSE = n−1

∑n
t=1(ht − ĥt)2, where ht and ĥ are the simulated

log-variance and its estimate, respectively. The global estimation accuracy compared to the MCMC is
calculates as in Eq.(20). In addition, the left panels report the computational time across methods. We report
the simulation results for both ρ = 0.98 (top panels), and ρ = 0.7 (bottom panels).

(a) MSE when ρ = 0.98 (b) Global acc. when ρ = 0.98 (c) Comp. time when ρ = 0.98

(d) MSE when ρ = 0.70 (e) Global acc. when ρ = 0.70 (f) Comp. time when ρ = 0.70
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Figure 8: Estimates for the latent process parameters

This figure reports the posterior estimates of the parameters of interest for the stochastic volatility models
across simulations, and for different inference methods. We report the simulation results for both ρ = 0.98
(top panels), and ρ = 0.7 (bottom panels). We compare our variational Bayes methods, with and without
smoothing, against both a standard MCMC (see Hosszejni and Kastner, 2021), and a global approximation
method as proposed by Chan and Yu (2022).

(a) ĉ when ρ = 0.98 (b) η̂2 when ρ = 0.98 (c) ρ̂ when ρ = 0.98

(d) ĉ when ρ = 0.70 (e) η̂2 when ρ = 0.70 (f) ρ̂ when ρ = 0.70
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Figure 9: Accuracy of approximations compared to MCMC approach at each time.

This figure reports the accuracy of our variational Bayes inference method against the global approximation
method proposed by Chan and Yu (2022). The top (bottom) panels report the global accuracy when ρ = 0.98
(ρ = 0.7). We report the estimation results for t ∈ (1, 10) in the left panel, t ∈ (301, 310) in the middle panel,
and t ∈ (591, 600) in the right panel. The accuracy is benchmarked against a standard MCMC method as in
Hosszejni and Kastner (2021).

(a) t ∈ (1, 10) when ρ = 0.98 (b) t ∈ (301, 310) when ρ = 0.98 (c) t ∈ (591, 600) when ρ = 0.98

(d) t ∈ (1, 10) when ρ = 0.70 (e) t ∈ (301, 310) when ρ = 0.70 (f) t ∈ (591, 600) when ρ = 0.70
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Online appendix for:

Smoothing volatility targeting

This online appendix provides the complete derivation of the optimal variational density

approximations for both the latent stochastic volatility state and the corresponding

structural parameters.

A Derivation of the variational densities

A.1 Optimal density of the parameters

Remark 1. Assume a set of parameters {ϑi}pi=1. The mean-field approach factorizes the joint

variational distribution according to a partition q(ϑ) =
∏M

j=1 q(ϑj), where, following Wand and

Ormerod (2011), each component q(ϑj) can be computed as

q(ϑj) ∝ exp
{
E−ϑj

[log p(ϑ,y)]
}
, (A.1)

where E−θj denotes the expectation with respect to the density
∏M

k=1,k 6=j q(θk) and log p(θ|y) is

the joint distribution of parameters and the data. A valid alternative to (A.1) is given by:

q(ϑj) ∝ exp
{
E−ϑj

[log p(ϑj|rest)]
}
, (A.2)

where p(ϑj|rest) denotes the full conditional distribution of ϑj.

Proposition A.1. The optimal variational density for the regression parameter vector is

q(β) ≡ Np(µq(β),Σq(β)) where:

Σq(β) =
(
XᵀH−1X + Σ−1β

)−1
µq(β) = Σq(β)

(
XᵀH−1y + Σ−1β µβ

)
, (A.3)

where H−1 = Diag
(
Eh
[
eh1
])

is a diagonal matrix with elements that depend on the optimal

density for the latent log-volatilities.
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Proof. The logarithm of the full conditional (β|rest) is proportional to:

log p(β|rest) ∝ −1

2
(y −Xβ)ᵀ diag

(
eh1
)

(y −Xβ)− 1

2

(
β − µβ

)ᵀ
Σ−1β

(
β − µβ

)
∝ −1

2

(
βᵀXᵀdiag

(
eh1
)

Xβ − 2βᵀXᵀdiag
(
eh1
)

y
)
− 1

2

(
βᵀΣ−1β β − 2βᵀΣ−1β µβ

)
.

Compute the optimal variational density as log q(β) = E−β [log p(β|rest)]:

log q(β) ∝ −1

2

(
βᵀXᵀdiag

(
Eh
[
eh1
])

Xβ − 2βᵀXᵀ
(
Eh
[
eh1
])

y
)

− 1

2

(
βᵀΣ−1β β − 2βᵀΣ−1β µβ

)
= −1

2

(
βᵀ(XᵀH−1X + Σ−1β )β − 2βᵀ(XᵀH−1y + Σ−1β µβ)

)
,

where H−1 = diag
(
Eh
[
eh1
])

. Take the exponential and end up with the kernel of a multivariate

gaussian distribution with parameters as in (A.3).

Proposition A.2. The optimal variational density for the unconditional mean of the log-

volatility process is q(c) ≡ N(µq(c), σ
2
q(c)) where:

σ2
q(c) = (µq(1/η2)ι

ᵀ
n+1µq(Q)ιn+1 + 1/σ2

c )
−1

µq(c) = σ2
q(c)(µq(1/η2)ι

ᵀ
n+1µq(Q)µq(h) + µc/σ

2
c ).

(A.4)

where

µq(Q) =



1 −µq(ρ) . . . 0 0

−µq(ρ) 1 + µq(ρ2) . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 + µq(ρ2) −µq(ρ)
0 0 . . . −µq(ρ) 1


.

Proof. The logarithm of the full conditional (c|rest) is proportional to:

log p(c|rest) ∝ − 1

2η2
(h− cιn+1)

ᵀQ(h− cιn+1)−
1

2σ2
c

(c− µc)2

∝ − 1

2η2
(c2ιᵀn+1Qιn+1 − 2cιᵀn+1Qh)− 1

2σ2
c

(c2 − 2cµc).
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Compute the optimal variational density as log q(c) = E−c [log p(c|rest)]:

log q(c) ∝ −1

2
Eη2 [1/η2](c2ιᵀn+1Eρ[Q]ιn+1 − 2cιᵀn+1Eρ[Q]Eh[h])− 1

2σ2
c

(c2 − 2cµc)

= −1

2
µq(1/η2)(c

2ιᵀn+1µq(Q)ιn+1 − 2cιᵀn+1µq(Q)µq(h))−
1

2σ2
c

(c2 − 2cµc)

= −1

2

(
c2(µq(1/η2)ι

ᵀ
n+1µq(Q)ιn+1 + 1/σ2

c )− 2c(ιᵀn+1µq(Q)µq(h) + µc/σ
2
c )
)
,

where µq(Q) denotes the element-wise expectation of the matrix Q. Take the exponential and

end up with the kernel of an univariate gaussian distribution with parameters as in (A.4).

Proposition A.3. The optimal variational density for the autoregressive parameter has the

following form:

log q(ρ) ∝ 1

2
log(1− ρ2)− 1

2
µq(1/η2)

(
ρ2

n−1∑
t=1

at − 2ρ
n−1∑
t=0

bt

)
, ρ ∈ (−1, 1) (A.5)

with

at = Eq
[
(ht − c)2

]
= (µq(ht) − µq(c))2 + σ2

q(ht) + σ2
q(c) (A.6)

bt = Eq [(ht − c)(ht+1 − c)] = (µq(ht) − µq(c))(µq(ht+1) − µq(c)) + σq(ht,ht+1) + σ2
q(c), (A.7)

where σq(ht,ht+1) denotes the covariance between ht and ht+1 under the approximating density

q. Notice that log q(ρ) can be written as:

log q(ρ) ∝ 1

2
log(1− ρ2)− 1

2
µq(1/η2)

(
n−1∑
t=1

at

)(
ρ2 −

∑n−1
t=0 bt∑n−1
t=1 at

)2

, ρ ∈ (−1, 1) (A.8)

thus the normalizing constant and the first two moments can be found by Monte Carlo meth-

ods by sampling from an univariate gaussian distribution with mean
∑n−1

t=0 bt∑n−1
t=1 at

and precision

µq(1/η2)
(∑n−1

t=1 at
)
.

Proof. The logarithm of the full conditional (ρ|rest) is proportional to:

log p(ρ|rest) ∝ 1

2
log |Q| − 1

2η2
(h− cιn+1)

ᵀQ(h− cιn+1)

∝ 1

2
log(1− ρ2)− 1

2η2

(
ρ2

n−1∑
t=1

(ht − c)2 − 2ρ
n−1∑
t=0

(ht − c)(ht+1 − c)

)
,
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for ρ ∈ (−1, 1). Compute the optimal variational density as log q(ρ) = E−ρ [log p(ρ|rest)]:

log q(ρ) ∝ 1

2
log(1− ρ2)− 1

2
Eq
[
1/η2

](
ρ2

n−1∑
t=1

Eq
[
(ht − c)2

]
− 2ρ

n−1∑
t=0

Eq [(ht − c)(ht+1 − c)]

)

=
1

2
log(1− ρ2)− 1

2
µq(1/η2)

(
ρ2

n−1∑
t=1

at − 2ρ
n−1∑
t=0

bt

)
, ρ ∈ (−1, 1),

where at and bt are as in (A.6). Take the exponential and obtain:

q(ρ) ∝
√

1− ρ2 Iρ∈(−1,1) φ

(
ρ;

∑n−1
t=0 bt∑n−1
t=1 at

,
1

µq(1/η2)
∑n−1

t=1 at

)
,

where φ(x;m, s2) denotes the density function of an univariate gaussian distribution with mean

m and variance s2.

Proposition A.4. The optimal variational density for the variance parameter is an Inverse-

Gamma distribution q(η2) ≡ IG(Aq(η2), Bq(η2)), where:

Aq(η2) = A+
n+ 1

2

Bq(η2) = B +
1

2
(µq(h) − µq(c)ιn+1)

ᵀµq(Q)(µq(h) − µq(c)ιn+1)

+
1

2

(
tr
{
Σq(h)µq(Q)

}
+ σ2

q(c)ι
ᵀ
n+1µq(Q)ιn+1

)
,

(A.9)

and recall that µq(1/η2) = Aq(η2)/Bq(η2).

Proof. The logarithm of the full conditional (η2|rest) is proportional to:

log p(η2|rest) ∝ −n+ 1

2
log η2 − 1

2η2
(h− cιn+1)

ᵀQ(h− cιn+1)− (A+ 1) log η2 −B/η2

∝ −
(
A+

n+ 1

2
+ 1

)
log η2 − 1

η2

(
B +

1

2
(h− cιn+1)

ᵀQ(h− cιn+1)

)
.

Compute the optimal variational density as log q(η2) = E−η2 [log p(η2|rest)]:

log q(η2) ∝ −
(
A+

n+ 1

2
+ 1

)
log η2 − 1

η2

(
B +

1

2
Ec,ρ,h [(h− cιn+1)

ᵀQ(h− cιn+1)]

)
,
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where

Ec,ρ,h [(h− cιn+1)
ᵀQ(h− cιn+1)] = Ec,ρ,h

[
hᵀQh− 2chᵀQιn+1 + c2ιᵀn+1Qιn+1

]
= Eh

[
hᵀµq(Q)h

]
+ Ec[c2]ιᵀn+1µq(Q)ιn+1

− 2µq(c)µ
ᵀ
q(h)µq(Q)ιn+1

= tr
{
Eh[hhᵀ]µq(Q)

}
+ (µ2

q(c) + σ2
q(c))ι

ᵀ
n+1µq(Q)ιn+1

− 2µq(c)µ
ᵀ
q(h)µq(Q)ιn+1

= tr
{(
µq(h)µ

ᵀ
q(h) + Σq(h)

)
µq(Q)

}
+ (µ2

q(c) + σ2
q(c))ι

ᵀ
n+1µq(Q)ιn+1

− 2µq(c)µ
ᵀ
q(h)µq(Q)ιn+1

= µᵀ
q(h)µq(Q)µq(h) + µ2

q(c)ι
ᵀ
n+1µq(Q)ιn+1

− 2µq(c)µ
ᵀ
q(h)µq(Q)ιn+1

+ tr
{
Σq(h)µq(Q)

}
+ σ2

q(c)ι
ᵀ
n+1µq(Q)ιn+1

= (µq(h) − µq(c)ιn+1)
ᵀµq(Q)(µq(h) − µq(c)ιn+1)

+ tr
{
Σq(h)µq(Q)

}
+ σ2

q(c)ι
ᵀ
n+1µq(Q)ιn+1.

Take the exponential and end up with the kernel of an inverse gamma distribution with pa-

rameters as in (A.9).

A.2 Homoscedastic log-volatility approximation

First of all, the joint distribution of the latent states and the observations, given the set of

covariates is given by:

log p(h,y|X) ∝ log p(y|h1,X) + log p(h)

= −1

2
ιᵀnh1 −

1

2
sᵀe−h1 − 1

2η2
(h− cιn+1)

ᵀQ(h− cιn+1), (A.10)

where s = (s1, . . . , sn)ᵀ with st = (yt−xᵀ
tβ)2, h1 = (h1, . . . , hn)ᵀ and eh1 = (eh1 , . . . , ehn)ᵀ. Let

the homoschedastic approximation be defined as h ∼ Nn+1(Wf , τ 2Γ−1) where µq(h) = Wf is

the mean vector and Σq(h) = τ 2Γ−1 is the variance-covariance matrix. More precisely, Γ is a

tridiagonal precision matrix with diagonal elements Γ1,1 = Γn+1,n+1 = 1 and Γi,i = 1 + γ2 for

i = 2, . . . , n, and off-diagonal elements Γi,j = −γ if |i − j| = 1 and 0 elsewhere (see Rue and

Held, 2005). Under this setting, the density function of the approximate distribution is given

by:

log φ(h|Wf , τ 2Γ−1) ∝ −n+ 1

2
log(τ 2)− n

2
log(1− γ2)− 1

2τ 2
(h−Wf)ᵀΓ(h−Wf). (A.11)
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Define the variational lower bound (ELBO) as:

ψ(f , τ 2, γ) = Eq(log p(h,y))− Eq(log q(h))

∝ −1

2
ιᵀnW1f −

1

2
µᵀ
q(s)e

−W1f+ 1
2
τ2ιn

− 1

2
µq(1/η2)(Wf − µq(c)ιn+1)

ᵀµq(Q)(Wf − µq(c)ιn+1)

− 1

2
µq(1/η2)τ

2tr(Γ−1µq(Q))

+
n+ 1

2
log(τ 2) +

n

2
log(1− γ2), (A.12)

where µq(s) = (µq(s1), . . . , µq(sn))
ᵀ with µq(st) = (yt−xᵀ

tµq(β))
2+tr

{
Σq(β)xtx

ᵀ
t

}
, and W1 ∈ Rn×k

denotes the matrix obtained by deleting the first row of W. Moreover

tr(Γ−1µq(Q)) = 2 + (1 + µq(ρ2))(n− 1)− 2nγµq(ρ).

Let ξ = (f , τ 2, γ) be the collection of the optimal parameters, the optimization we have to

solve is equal to ξ̂ = arg maxξ ψ(f , τ 2, γ), where the objective function ψ(f , τ 2, γ) has gradient

equal to

∇ξψ(f , τ 2, γ) =

∇fψ(f , τ 2, γ)

∇τ2ψ(f , τ 2, γ)

∇γψ(f , τ 2, γ)

 ,
where

∇fψ(f , τ 2, γ) = −1

2
Wᵀ[0, ιᵀn]ᵀ +

1

2
Wᵀ

(
[0,µᵀ

q(s)]
ᵀ � e−Wf+ 1

2
τ2ιn+1

)
− µq(1/η2)Wᵀµq(Q)(Wf − µq(c)ιn+1), (A.13)

∇τ2ψ(f , τ 2, γ) = −1

4
(µq(s) � ιn)ᵀe−W1f+ 1

2
τ2ιn

− 1

2
µq(1/η2)(2 + (1 + µq(ρ2))(n− 1)− 2nγµq(ρ)) +

n+ 1

2τ 2
, (A.14)

∇γψ(f , τ 2, γ) = nτ 2µq(1/η2)µq(ρ) −
nγ

1− γ2
, (A.15)

and Hessian equal to:

Hξ =

∇
2
f ,fψ(f , τ 2, γ) ∇2

f ,τ2ψ(f , τ 2, γ) ∇2
f ,γψ(f , τ 2, γ)

∇2
f ,τ2ψ(f , τ 2, γ) ∇2

τ2,τ2ψ(f , τ 2, γ) ∇2
τ2,γψ(f , τ 2, γ)

∇2
f ,γψ(f , τ 2, γ) ∇2

τ2,γψ(f , τ 2, γ) ∇2
γ,γψ(f , τ 2, γ)

 ,
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with

∇2
f ,fψ(f , τ 2, γ) = −1

2
Wᵀ

{
Diag

[
[0,µᵀ

q(s)]
ᵀ � e−Wf+ 1

2
τ2ιn+1

]
+ µq(1/η2)µq(Q)

}
W (A.16)

∇2
τ2,τ2ψ(f , τ 2, γ) = −1

8
(µq(s) � ιn)ᵀe−W1f+ 1

2
τ2ιn − n+ 1

2τ 4
(A.17)

∇2
γ,γψ(f , τ 2, γ) = −n(1 + γ2)

(1− γ2)2
(A.18)

∇2
f ,τ2ψ(f , τ 2, γ) =

1

4
Wᵀ([0,µᵀ

q(s)]
ᵀ � e−Wf+ 1

2
τ2ιn+1) (A.19)

∇2
f ,γψ(f , τ 2, γ) = 0k (A.20)

∇2
τ2,γψ(f , τ 2, γ) = nµq(ρ)µq(1/η2) (A.21)

where a = diag(A) denotes the operator that returns the vector a ∈ Rn of elements belonging

to the main diagonal of the square matrix A ∈ Rn×n, while A = Diag(a) denotes the operator

that returns a diagonal square matrix A ∈ Sn+ whose entries consist of the corresponding

elements of the vector a ∈ Rn.

A.3 Heteroscedastic log-volatility approximation

Let the heteroschedastic approximation be defined as h ∼ Nn+1(Wfq(h),Σq(h)) where the

mean vector is µq(h) = Wfq(h). To find the optimal parameters of the approximating den-

sity (fq(h),Σq(h)), we have to solve the following optimization problem:

ξ̂ = arg max
ξ
ψ(fq(h),Σq(h)), (A.22)

where ψ(fq(h),Σq(h)) = Eq(log p(h,y))−Eq(log q(h)) is called variational lower bound (ELBO).

To this aim, we can exploit a result provided by Rohde and Wand (2016) valid when the

approximating density is a multivariate gaussian distribution. The latter states a closed-form

update scheme for the variational parameters:

Σnew =
[
∇2
µ,µS(µold,Σold)

]−1
(A.23)

µnew = µold + Σnew∇µS(µold,Σold), (A.24)

where∇µS(µold,Σold) and∇2
µ,µS(µold,Σold) denote the first and second derivative of S(µ,Σ)

with respect to µ and evaluated at (µold,Σold). The function S is the so called non-entropy
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function which is given by Eq(log p(h,y)). In our scenario, we have that

S(µq(h),Σq(h)) = −1

2
[0, ιᵀn]µq(h) −

1

2
[0,µᵀ

q(s)]e
−µq(h)+

1
2
σ2

q(h) − 1

2
µq(1/η2)tr(Σq(h)µq(Q))

− 1

2
µq(1/η2)(µq(h) − µq(c)ιn+1)

ᵀµq(Q)(µq(h) − µq(c)ιn+1), (A.25)

where σ2
q(h) = diag(Σq(h)) is the vector of variances and the diag operator extracts the diagonal

vector from the input matrix. Moreover, we obtain:

∇µq(h)
S(µq(h),Σq(h)) = −1

2
[0, ιᵀn]ᵀ +

1

2
[0,µᵀ

q(s)]
ᵀ � e−µq(h)+

1
2
σ2

q(h)

− µq(1/η2)µq(Q)(µq(h) − µq(c)ιn+1), (A.26)

∇2
µq(h)µq(h)

S(µq(h),Σq(h)) = −1

2
Diag

[
[0,µᵀ

q(s)]
ᵀ � e−µq(h)+

1
2
σ2

q(h)

]
− µq(1/η2)µq(Q), (A.27)

where ιn is an n-dimensional vector of ones, µq(1/η2) is the variational mean of 1/η2, µq(Q) is

the element-wise variational mean of Q, and � denotes the Hadamard product. Then, the

updating scheme becomes:

Σnew
q(h) =

[
∇2
µq(h)µq(h)

S(µoldq(h),Σ
old
q(h))

]−1
, (A.28)

fnewq(h) = foldq(h) + W+ Σnew
q(h)∇µq(h)

S(µoldq(h),Σ
old
q(h)), (A.29)

µnewq(h) = Wfnewq(h) , (A.30)

with W+ = (WᵀW)−1Wᵀ the left Moore–Penrose pseudo-inverse of W.

Remark 2. Under the multivariate gaussian approximation of q(h) with mean vector µq(h) and

covariance matrix Σq(h), the optimal density of the vector of variances σ2 = exp{h}, namely

q(σ2), is a multivariate log-normal distribution such that:

Eq[σ2
t ] = exp{µq(ht) + 1/2σ2

q(ht)}, (A.31)

Varq[σ
2
t ] = exp{2µq(ht) + σ2

q(ht)}(exp{σ2
q(ht)} − 1), (A.32)

Covq[σ
2
t , σ

2
t+1] = exp{µq(ht) + µq(ht+1) + 1/2(σ2

q(ht) + σ2
q(ht+1)

)}(exp{Covq[ht, ht+1]} − 1).

(A.33)

A.4 Pseudo-code for algorithm implementation

In this section we present the pseudo-code for the implementation of the proposed algo-

rithm, with and without smoothing in the variational posterior distributions. The algorithm

is iterative and the convergence is achieved when the variation in the parameters’ update

q∗(ϑ,h)(iter) − q∗(ϑ,h)(iter−1) is smaller than a threshold ∆.
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Algorithm 1: Variational Bayes for arbitrary smoothness in stochastic volatility.

Initialize: q∗(ϑ,h), W, ∆

while
(
∆̂ > ∆

)
do

Update q∗(h) as in Section A.2 or Section A.3;

Update q∗(c) = N(µq(c), σ
2
q(c)) as in (A.4) with

σ2
q(c) = (µq(1/η2)ι

ᵀ
n+1µq(Q)ιn+1 + 1/σ2

c )
−1,

µq(c) = σ2
q(c)(µq(1/η2)ι

ᵀ
n+1µq(Q)µq(h) + µc/σ

2
c ).

Update q(η2) = IG(Aq(η2), Bq(η2)) as in (A.9) with
Aq(η2) = A+ n+1

2
,

Bq(η2) = B + 1
2
(µq(h) − µq(c)ιn+1)

ᵀµq(Q)(µq(h) − µq(c)ιn+1)

+1
2

(
tr
{
Σq(h)µq(Q)

}
+ σ2

q(c)ι
ᵀ
n+1µq(Q)ιn+1

)
.

Update q∗(ρ) as in (A.8);

Update q(β) = Np(µq(β),Σq(β)) as in (A.3) with

Σq(β) =
(
XᵀH−1X + Σ−1β

)−1
,

µq(β) = Σq(β)

(
XᵀH−1y + Σ−1β µβ

)
.

Compute ∆̂ = q∗(ϑ,h)(iter) − q∗(ϑ,h)(iter−1) ;
end
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