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ABSTRACT
We propose a novel variational Bayes approach to estimate high-dimensional Vector Autoregressive (VAR)
models with hierarchical shrinkage priors. Our approach does not rely on a conventional structural rep-
resentation of the parameter space for posterior inference. Instead, we elicit hierarchical shrinkage priors
directly on the matrix of regression coefficients so that (a) the prior structure maps into posterior inference
on the reduced-form transition matrix and (b) posterior estimates are more robust to variables permutation.
An extensive simulation study provides evidence that our approach compares favorably against existing
linear and nonlinear Markov chain Monte Carlo and variational Bayes methods. We investigate the statistical
and economic value of the forecasts from our variational inference approach for a mean-variance investor
allocating her wealth to different industry portfolios. The results show that more accurate estimates translate
into substantial out-of-sample gains across hierarchical shrinkage priors and model dimensions.
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1. Introduction

Hierarchical shrinkage priors have been shown to represent an
effective regularization technique when estimating large Vector
Autoregressive (VAR) models. The use of these priors often relies
on a Cholesky decomposition of the residuals covariance matrix
so that a large system of equations is reduced to a sequence of
univariate regressions. This allows for more efficient compu-
tations as priors can be elicited on the structural VAR repre-
sentation implied by the Cholesky factorization, and posterior
inference is carried out equation-by-equation.

Such a conventional approach has two important implica-
tions for posterior inference: first, priors are not order-invariant,
meaning that posterior inference is sensitive to permutations of
the endogenous variables for a given prior specification. This is
particularly relevant in high dimensions whereby logical orders
of the variables of interest might be unclear, or a full search
among all possible ordering combinations might be unfeasible
(see, e.g., Chan, Koop, and Yu 2023). Second, imposing a shrink-
age prior to the structural VAR formulation might not help to
pin down reduced-form VAR parameters. That is, priors are not
translation-invariant. This is especially relevant in forecasting
applications whereby the main objective is to accurately identify
predictive relationships across variables rather than to identify
structural shocks.

In this article, we take a different approach toward posterior
inference with hierarchical shrinkage priors in large VAR mod-
els. Specifically, we propose a novel variational Bayes estimation
approach which allows for a fast and accurate estimation of
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the reduced-form VAR without leveraging on a conventional
structural VAR representation. This allows us to elicit shrinkage
priors directly on the matrix of regression coefficients so that (a)
the prior structure directly maps into the posterior inference of
the reduced-form transition matrix and (b) posterior estimates
are less sensitive to variable permutation. We also account for
the effect of “exogenous” predictors and stochastic volatility in
the residuals.

The key idea is that by abstracting from the linearity
constraints implied by a structural VAR formulation, one can
provide a direct identification of the reduced-form VAR param-
eters. This could have important implications for forecasting,
especially in large-scale models where the set of regression
coefficients may be sparse (see, e.g., Bernardi, Bianchi, and
Bianco 2023). Our approach is computationally more efficient
than comparable Markov chain Monte Carlo (MCMC) methods
while maintaining a high accuracy in posterior estimates.

We investigate the estimation accuracy using an extensive
simulation study for different model dimensions and variable
permutations. As benchmarks, we consider a variety of estab-
lished estimation approaches developed for large Bayesian VAR
models, such as the linearized MCMC proposed by Chan and
Eisenstat (2018) and Cross, Hou, and Poon (2020) and its vari-
ational Bayes counterpart proposed by Chan and Yu (2022) and
Gefang, Koop, and Poon (2023). Both approaches are built upon
a structural VAR formulation. In addition, we compare our vari-
ational inference method against the MCMC algorithm devel-
oped by Gruber and Kastner (2022), which is not constrained
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by a Cholesky factorization for parameter identification similar
to our approach. We test each estimation method for different
hierarchical priors, such as the adaptive-Lasso of Leng, Tran,
and Nott (2014), an adaptive version of the Normal-Gamma
of Griffin and Brown (2010), and the Horseshoe of Carvalho,
Polson, and Scott (2010).

Overall, the simulation results show that our variational
Bayes algorithm represents the best tradeoff between estimation
accuracy and computational efficiency. Specifically, posterior
inference from our variational Bayes method is as accurate
as nonlinear MCMC methods (see, e.g., Gruber and Kastner
2022) but is considerably more efficient. At the same time, our
approach is as efficient as conventional MCMC and variational
Bayes methods based on a structural VAR formulation but
is significantly more accurate and less sensitive to variable
permutation.

Our approach toward posterior inference in large VARs is
guided by the principle that more accurate identification of the
reduced-form transition matrix should ultimately lead to better
out-of-sample forecasts and financial decision-making. To test
this assumption, we investigate the statistical and economic
value of the forecasts from our model in the context of a mean-
variance investor who allocates her wealth between an industry
portfolio and a risk-free asset based on lagged cross-industry
returns and macroeconomic predictors.

Although the model is general and can be applied to any
type of financial returns, as far as data are stationary, our focus
on different industry portfolios is motivated by keen interest
from researchers (see, e.g., Fama and French 1997; Hou and
Robinson 2006) and practitioners alike. Indeed, the implications
of industry returns predictability are arguably far from trivial. If
all industries are unpredictable, the market return, a weighted
average of the industry portfolios, should also be unpredictable.
As a result, the abundant evidence of aggregate market return
predictability (see, e.g., Rapach and Zhou 2013) implies that at
least some industry portfolio returns should be predictable.

The main results show that our variational inference
approach fares better than competing methods regarding out-
of-sample point and density forecasts. More accurate forecasts
translate into larger economic gains as measured by certainty
equivalent return spreads vis-á-vis a naive investor who makes
investment decisions based on the sample mean and variance
of the returns. This holds across different hierarchical prior
specifications. Overall, the empirical results support our view
that by accurately identifying weak correlations between
predictors and portfolio returns, one can significantly improve—
statistically and economically—the out-of-sample performance
of large-scale VAR models.

Our article connects to a growing literature exploring the
use of Bayesian methods to estimate high-dimensional VAR
models, such as Chan and Eisenstat (2018), Carriero, Clark, and
Marcellino (2019), Huber and Feldkircher (2019), Chan and Yu
(2022), Cross, Hou, and Poon (2020), Kastner and Huber (2020),
Chan, Koop, and Yu (2023), Chan (2021), Gruber and Kastner
(2022), and Gefang, Koop, and Poon (2023), among others. We
contribute to this literature by providing a fast and accurate
variational inference method which generalizes posterior infer-
ence with hierarchical shrinkage priors by abstracting from a
conventional structural VAR representation.

A second strand of literature we contribute to is related to the
predictability of stock returns. Specifically, we contribute to the
ongoing struggle to capture the dynamics of risk premiums by
looking at industry-based portfolios. Early exceptions are Ferson
and Harvey (1991), Ferson and Korajczyk (1995), Ferson and
Harvey (1999) and Avramov (2004). As highlighted by Lewellen,
Nagel, and Shanken (2010), the sample variation of industry
portfolios is particularly elusive to model since conventional risk
factors do not seem to capture significant comovements. We
contribute to this literature by investigating the out-of-sample
predictability of industry portfolios through the lens of a novel
estimation method for large Bayesian VAR models.

2. The Choice of Model Parameterization

Let yt = (
y1,t , . . . , yd,t

)ᵀ ∈ R
d be a multivariate normal random

variable and denote by xt = (
1, x1,t , . . . , xp,t

)ᵀ ∈ R
(p+1) a

vector of covariates at time t. A vector autoregressive model
with exogenous covariates and stochastic volatility is defined in
compact form as

yt = �zt−1 + ut , ut ∼ Nd
(
0d, �−1

t
)

, t = 1, . . . , T,
(1)

with zt−1 = (yᵀt−1, xᵀt−1)
ᵀ and � = (�, �) consistently

partitioned, where � ∈ R
d×d is the transition matrix containing

the autoregression coefficients and � ∈ R
d×(p+1) is the matrix

of regression parameters for the exogenous predictors. Here,
ut ∈ R

d is a sequence of uncorrelated innovation terms such
that ut−k ⊥ ut−j ∀k, j with k �= j and �t ∈ S

d++ being a
symmetric and positive-definite time-varying precision matrix.
A modified Cholesky factorization of �t can be conveniently
exploited to re-write the model with orthogonal innovations
(see, e.g., Rothman, Levina, and Zhu 2010).

Let �t = LᵀVtL, where L ∈ R
d×d is unit-lower-triangular

and Vt ∈ S
d++ is diagonal with time-varying elements Vt =

Diag(ν1,t , . . . , νd,t). By multiplying both sides of (1) by L =
Id − B one can obtain two alternative re-parameterizations of
the same model:

yt = B(yt − �zt−1) + �zt−1 + εt , εt ∼ Nd(0d, V−1
t ),

(2a)
yt = Byt + Azt−1 + εt , εt ∼ Nd(0d, V−1

t ),
(2b)

where A = L�, and B has a strict-lower-triangular structure
with elements βj,k = −lj,k for j = 2, . . . , d and k = 1, . . . , j − 1.
The key difference is that (2a) is nonlinear in the parameters,
while (2b) is linear. The latter is the structural VAR represen-
tation, widely used in existing MCMC and variational Bayes
estimation methods for high-dimensional VAR models (see, e.g.,
Chan and Eisenstat 2018; Chan and Yu 2022; Gefang, Koop, and
Poon 2023). Instead, (2a) is the reduced-form parameterization
at the core of our variational inference approach. This has been
used in the context of MCMC algorithms for smaller dimensions
(see, e.g., Huber and Feldkircher 2019; Gruber and Kastner
2022).

From (2a)–(2b) one can obtain two alternative equation-by-
equation representations in which the jth component of yt is



JOURNAL OF BUSINESS & ECONOMIC STATISTICS 3

defined as

yj,t = β jrj,t + ϑ jzt−1 + εj,t , εj,t ∼ N(0, ν−1
j,t ), (3a)

yj,t = β jy
j
t + ajzt−1 + εj,t , εj,t ∼ N(0, ν−1

j,t ), (3b)

for all j = 1, . . . , d and t = 1, . . . , T, where β j ∈ R
j−1 is a

row vector containing the non-null elements in the jth row of B,
and ϑ j, aj denote the jth row of � and A, respectively. For any
j = 1, . . . , d, let rj,t = yj

t −�jzt−1 denotes the vector of residuals
up to the (j − 1)th regression, with yj

t = (y1,t , . . . , yj−1,t)ᵀ ∈
R

j−1 and �j ∈ R
(j−1)×d the sub-matrix containing the first j−1

rows of �. We follow Gefang, Koop, and Poon (2023) and Chan
and Yu (2022) and model the time variation in ν−1

j,t = exp
(
hj,t

)
assuming a log-volatility process hj,t = hj,t−1 + ej,t with ej,t ∼
N(0, ψj), where the initial state h0,j ∼ N(0, k0 ψj), k0 � 0, is
unknown.

A discussion on variable permutation. Existing Bayesian
approaches for large VAR models often rely on the structural
representation in (2b), and therefore consider the elements in A
as the parameters of interest. This simplifies the implementation
of MCMC (see, e.g., Chan and Eisenstat 2018) and variational
Bayes algorithms (see, e.g., Gefang, Koop, and Poon 2023).
Under the re-parameterization A = L�, each element ϑi,j –
which denotes the (i, j)-entry of � – is a linear combination
ϑi,j = ai,j + ∑i−1

k=1 ci,kak,j, where ai,j and ci,j are the (i, j)-entry of
A and L−1, respectively.

This raises two main issues: first, ai,j = 0 does not imply
ϑi,j = 0, that is a shrinkage prior on A does not preserve the
structure of �. Second, the estimate �̂ = L̂−1Â for a given
prior is sensitive to variables permutation due to its dependence
on the Cholesky factorization (see, e.g., Chan, Koop, and Yu
2023). Figure 1 provides a visual representation of this issue by
comparing the estimates obtained from a horseshoe prior on
(2a) versus (2b), for two different permutations of yt .

This simple example suggests that the estimates �̂ = L̂−1Â
diverge from the true � and are sensitive to variable permuta-

tion. Instead, inference based on (2a) provides a more accurate
identification of �, less sensitive to variable permutation.

3. Variational Bayes Inference

A variational approach to Bayesian inference requires to mini-
mize the Kullback-Leibler (KL) divergence between an approxi-
mating density q(ξ) and the true posterior density p(ξ |y), where
ξ denotes the set of parameters of interest. Ormerod and Wand
(2010) show that minimizing the KL divergence can be equiva-
lently stated as the maximization of the “effective lower bound”
(ELBO) denoted by p

(
y; q

)
:

q∗(ξ) = arg max
q(ξ)∈Q

log p
(
y; q

)
,

p
(
y; q

) =
∫

q(ξ) log
{

p(y, ξ)

q(ξ)

}
dξ , (4)

where q∗(ξ) ∈ Q represents the optimal variational density and
Q is a space of density functions. Depending on the assumption
onQ, one falls into different variational paradigms. For instance,
given a partition of the parameters vector ξ = {ξ1, . . . , ξp},
a mean-field variational Bayes (MFVB) approach assumes a
factorization of the form q(ξ) = ∏p

j=1 qi(ξ j). A closed-form
expression for each optimal variational density q∗(ξ j) can be
defined as

q∗(ξ j) ∝ exp
{
Eq�(ξ\ξ j)

[
log p(y, ξ)

]}
,

q�(ξ \ ξ j) =
p∏

i=1
i �=j

qi(ξ i), (5)

where the expectation is taken with respect to the joint approx-
imating density with the jth element of the partition removed
q�(ξ \ξ j). This allows the implementation of an efficient iterative
algorithm to estimate the optimal density q∗(ξ). However, some
components q∗(ξ j) may remain too complex to handle and
further restrictions are needed. If we assume that q∗(ξ j) belongs

Figure 1. Comparison between the posterior inference obtained from A = L� (first row) and the original parameterization � (second row), for two different
permutations of yt .
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to a pre-specified parametric family of distributions, the MFVB
outlined above is sometimes labeled as semi-parametric (see
Rohde and Wand 2016).

3.1. Optimal Variational Densities

We present a factorization of the variational density q(ξ) for
the model in (2a). As a baseline, we consider a non-informative
Normal prior for each entry of �; that is, ϑj,k ∼ N(0, υ),
for j = 1, . . . , d and k = 1, . . . , d + p + 1. In addition, let
ψj ∼ InvGa(aψ , bψ) for j = 1, . . . , d, and βj,k ∼ N(0, τ), for
j = 2, . . . , d and k = 1, . . . , j − 1. Here, InvGa(·, ·) denotes the
Inverse-Gamma distribution, and aψ > 0, bψ > 0, τ � 0 and
υ � 0 are the related hyper-parameters.

Let ξ = (ϑᵀ, hᵀ, ψᵀ, βᵀ)ᵀ be the set of parameters of
interest, the corresponding variational density can be factorized
as q(ξ) = q(ϑ)q(h)q(ψ)q(β), where:

q(ϑ) =
d∏

j=1
q(ϑ j), q(h) =

d∏
j=1

q(hj),

q(ψ) =
d∏

j=1
q(ψj), q(β) =

d∏
j=2

q(β j). (6)

For ease of exposition, we summarize in the main text the
optimal variatonal density for the main parameters of interest
� for the baseline non-informative prior and three alternative
hierarchical shrinkage priors. The full derivations of the optimal
variational densities q∗(hj) ≡ NT+1(μq(hj), �q(hj)), q∗(ψj) ≡
InvGa(aq(ψj), bq(ψj)), and q∗(β j) ≡ Nj−1(μq(βj), �q(βj)) are
reported in Appendix B as Proposition B.1.1, B.1.7, and B.1.4,
respectively. We leave to Proposition B.1.3 in Appendix B the
derivations for the constant volatility case with νj,t = νj and
νj ∼ Ga(aν , bν) for j = 1, . . . , d, where Ga(·, ·) denotes the
gamma distribution, and aν > 0, bν > 0. Appendix B also
provides the analytical form of the lower bound for each set of
parameters.

Proposition 3.1 provides the optimal variational density for
the jth row of � under the Normal prior specification ϑj,k ∼
N(0, υ). The proof and analytical derivations are reported in
Appendix B.1.

Proposition 3.1. The optimal variational density for ϑ j is
q∗(ϑ j) ≡ Nd+p+1(μq(ϑj), �q(ϑj)) with hyper-parameters:

�q(ϑj) =
( T∑

t=1
μq(ωj,j,t)zt−1zᵀt−1 + 1/υId+p+1

)−1

,

μq(ϑj) = �q(ϑj)

( T∑
t=1

(
μq(ωj,t) ⊗ zt−1

)
yt

−
T∑

t=1

(
μq(ωj,−j,t) ⊗ zt−1zᵀt−1

)
μq(ϑ−j)

)
, (7)

where ϑ =
(

ϑ j
ϑ−j

)
and ωj,t denotes the jth row of �t =(

ωj,j,t ωj,−j,t
ω−j,j,t �−j,−j,t

)
.

Note that although the multivariate model is reduced to a
sequence of univariate regressions, the analytical form of the
variational means μq(ϑj) in Proposition 3.1 depends on all the
other rows through μq(ϑ−j). As a result, the estimates of ϑ j
explicitly depend on all of the other ϑ−j. This addresses the
issue in the MCMC algorithm of Carriero, Clark, and Marcellino
(2019), which has been highlighted by Bognanni (2022) and
corrected by Carriero et al. (2022).

Bayesian adaptive-Lasso. The Bayesian adaptive-Lasso of
Leng, Tran, and Nott (2014) extends the original work of
Park and Casella (2008) by assuming a different shrinkage
for each regression parameter based on a Laplace distribution
with an individual scaling parameter ϑj,k|λj,k ∼ Lap(λj,k),
for j = 1, . . . , d and k = 1, . . . , d + p + 1. The latter can
be represented as a scale mixture of Normal distributions
with an exponential mixing density, ϑj,k|υj,k ∼ N(0, υj,k),
υj,k|λ2

j,k ∼ Exp(λ2
j,k/2). The scaling parameters λ2

j,k are not fixed
but are inferred from the data by assuming a common hyper-
prior distribution λ2

j,k ∼ Ga(h1, h2), where h1, h2 > 0.
Let ξL = (ξᵀ, υᵀ, (λ2)ᵀ))ᵀ be the vector ξ augmented with

the adaptive-Lasso prior parameters. The distribution q(ξL) can
be factorized as,

q(ξL) = q(ξ)q(υ, λ2),

q(υ, λ2) =
d∏

j=1

d+p+1∏
k=1

q(υj,k)q(λ2
j,k), (8)

Proposition 3.2 provides the optimal variational density for the
jth row of � under the Bayesian adaptive-Lasso prior specifi-
cation ϑj,k|υj,k ∼ N(0, υj,k), υj,k|λ2

j,k ∼ Exp(λ2
j,k/2), and λ2

j,k ∼
Ga(h1, h2). The proof and the analytical derivations are reported
in Appendix B.2.

Proposition 3.2. The optimal variational density for ϑ j is
q∗(ϑ j) ≡ Nd+p+1(μq(ϑj), �q(ϑj)) with �q(ϑj) =

(∑T
t=1 μq(ωj,j,t)

zt−1zᵀt−1 + Diag(μq(1/υj))
)−1

, where Diag(μq(1/υj)) is a diago-
nal matrix with elements μq(1/υj) = (μq(1/υj,1), μq(1/υj,2), . . . ,
μq(1/υj,d+p+1)). The parameters μq(ϑj) and μq(ωj,j,t) are as in
Proposition 3.1. The optimal variational densities of the scaling
parameters are q∗(λ2

j,k) ≡ Ga(aq(λ2
j,k)

, bq(λ2
j,k)

) with aq(λ2
j,k)

, bq(λ2
j,k)

defined in (B.20), and q∗(1/υj,k) ≡ IG(aq(1/υj,k), bq(1/υj,k)) with
aq(υj,k), bq(υj,k) defined in (B.19).

Adaptive Normal-Gamma. We expand the original Normal-
Gamma prior in Griffin and Brown (2010) by assuming that
each regression coefficient has a different shrinkage parameter.
The hierarchical specification requires that ϑj,k|υj,k ∼ N(0, υj,k),
and υj,k|ηj, λj,k ∼ Ga

(
ηj, ηjλj,k/2

)
for j = 1, . . . , d and k =

1, . . . , d + p + 1. Note that by restricting ηj = 1 one obtains the
adaptive-Lasso prior. The marginalization over the variance υj,k
leads to p(ϑj,k|ηj, λj,k) which corresponds to a Variance-Gamma
distribution. The hyper-parameters ηj and λj,k are not fixed but
are inferred from the data by assuming two common hyper-
priors λj,k ∼ Ga(h1, h2) and ηj ∼ Exp(h3), where hl > 0 for
l = 1, 2, 3.
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Let ξNG = (ξᵀ, υᵀ, λᵀ, ηᵀ)ᵀ be the vector ξ augmented with
the parameters of the adaptive Normal-Gamma prior. The joint
distribution q(ξNG) can be factorized as,

q(ξNG) = q(ξ)q(υ, λ, η),

q(υ, λ, η) =
d∏

j=1
q(ηj)

d+p+1∏
k=1

q(υj,k)q(λj,k). (9)

Proposition 3.3 provides the optimal variational density for
the jth row of � under an adaptive Normal-Gamma specifi-
cation υj,k|ηj, λj,k ∼ Ga

(
ηj, ηjλj,k/2

)
, λj,k ∼ Ga(h1, h2) and

ηj ∼ Exp(h3). The proof and analytical derivations are reported
in Appendix B.3.

Proposition 3.3. The optimal variational density for ϑ j is
q∗(ϑ j) ≡ Nd+p+1(μq(ϑj), �q(ϑj)) with �q(ϑj) =

(∑T
t=1 μq(ωj,j,t)

zt−1zᵀt−1 + Diag(μq(1/υj))
)−1

, where Diag(μq(1/υj)) is a diago-
nal matrix with elements μq(1/υj) = (μq(1/υj,1), μq(1/υj,2), . . . ,
μq(1/υj,d+p+1)). The parameters μq(ϑj) and μq(ωj,j,t) are as in
Proposition 3.1. The optimal variational densities of the scaling
parameters are q∗(λj,k) ≡ Ga(aq(λj,k), bq(λj,k)) with aq(λj,k), bq(λj,k)

defined in (B.24), and q∗(υj,k) ≡ GIG(ζq(υj,k), aq(υj,k), bq(υj,k)) is
a generalized inverse normal distribution with ζq(υj,k), aq(υj,k),
bq(υj,k) defined in (B.23).

The optimal density for the parameter ηj is not a known dis-
tribution function. Proposition B.3.3 in Appendix B.3 provides
an analytical approximation of its moments so that the optimal
density can be calculated via numerical integration.

Horseshoe prior. We consider the Horseshoe prior as proposed
by Carvalho, Polson, and Scott (2009, 2010). This is based on
the hierarchical specification ϑj,k|υ2

j,k, γ 2 ∼ N(0, γ 2υ2
j,k), γ ∼

C+(0, 1), υj,k ∼ C+(0, 1), where C+(0, 1) denotes the standard
half-Cauchy distribution with probability density function equal
to f (x) = 2/{π(1 + x2)}�(0,∞)(x). The Horseshoe is a global-
local prior that implies an aggressive shrinkage of weak signals
without affecting the strong ones (see, e.g., Polson and Scott
2011). We follow Wand et al. (2011) and leverage on a scale
mixture representation of the half-Cauchy distribution as,

ϑj,k|υ2
j,k, γ 2 ∼ N(0, γ 2υ2

j,k), γ 2|η ∼ InvGa(1/2, 1/η),

υ2
j,k|λj,k ∼ InvGa(1/2, 1/λj,k),

η ∼ InvGa(1/2, 1),
λj,k ∼ InvGa(1/2, 1), (10)

where the local and global shrinkage parameters are υ2
j,k and γ 2,

respectively.
Let ξHS = (ξᵀ, (υ2)ᵀ, γ 2, λᵀ, η)ᵀ be the vector ξ augmented

with the parameters of the Horseshoe prior. The joint distribu-
tion ξHS can be factorized as,

q(ξHS) = q(ξ)q(υ2, γ 2, λ, η),

q(υ2, γ 2, λ, η) = q(γ 2)q(η)

d∏
j=1

d+p+1∏
k=1

q(υ2
j,k)q(λj,k). (11)

Proposition 3.4 provides the optimal variational density for the
jth row of � under the Horseshoe prior outlined in (10). The
proof and analytical derivations are reported in Appendix B.4.

Proposition 3.4. The optimal variational density for ϑ j is
q∗(ϑ j) ≡ Nd+p+1(μq(ϑj), �q(ϑj)) with �q(ϑj) =

(∑T
t=1 μq(ωj,j,t)

zt−1zᵀt−1 + μq(1/γ 2)Diag(μq(1/υ2
j ))

)−1
, where Diag(μq(1/υ2

j ))

is a diagonal matrix with elements μq(1/υ2
j ) = (μq(1/υ2

j,1)
,

μq(1/υ2
j,2)

, . . . , μq(1/υ2
j,d+p+1)

). The parameters μq(ϑj) and μq(ωj,j,t)

are as in Proposition 3.1. The optimal variational densities for
the global shrinkage is q∗(γ 2) ≡ InvGa

( 1
2 {d(d + p + 1) + 1},

bq(γ 2)

)
with bq(γ 2) defined in (B.33), and q∗(η) ≡ InvGa

(1, bq(η)) with bq(η) defined in (B.35). The optimal variational
densities for the local shrinkage parameters are q∗(υ2

j,k) ≡
InvGa(1, bq(υ2

j,k)
) and q∗(λj,k) ≡ InvGa(1, bq(λj,k)), with bq(υ2

j,k)

and bq(λj,k) defined in (B.32) and (B.34), respectively.

3.2. From Shrinkage to Sparsity

In addition to computational tractability, shrinking rather than
selecting is a defining feature of the hierarchical priors outlined
in Section 3.1. Yet, posterior estimates of � are non-sparse
and thus can not provide exact differentiation between signifi-
cant versus nonsignificant predictors. The latter is particularly
relevant since we ultimately want to assess the accuracy of
our variational inference approach—versus existing MCMC and
variational Bayes algorithms—in identifying the exact structure
of �.

To address this issue, we build upon Ray and Bhattacharya
(2018) and implement a Signal Adaptive Variable Selector
(SAVS) algorithm to induce sparsity in �̂, conditional on a
given prior. The SAVS is a post-processing algorithm which
divides signals and nulls on the basis of the point estimates of
the regression coefficients (see, e.g., Hauzenberger, Huber, and
Onorante 2021). Specifically, let ϑ̂j be the posterior estimate of
ϑj and zj be the associated vector of covariates. If |ϑ̂j| ||zj||2 ≤
|ϑ̂j|−2 we set ϑ̂j = 0, where || · || denotes the Euclidean norm.

The reason why we rely on the SAVS post-processing to
induce sparsity in the posterior estimates is threefold. First, as
highlighted by Ray and Bhattacharya (2018), the SAVS repre-
sents an automatic procedure in which the sparsity-inducing
property directly depends on the effectiveness of the shrinkage
performed on ϑ̂j. This refers to the precision of the posterior
mean estimates; that is, the more accurate is ϑ̂j, the more precise
is the identification of the nonzero elements in �. Second, the
SAVS is “agnostic” with respect to the shrinkage prior or estima-
tion approach adopted, so it represents a natural tool to compare
different estimation methods. Third, it is decision-theoretically
motivated as it grounds on the idea of minimizing the posterior
expected loss (see, e.g., Huber, Koop, and Onorante 2021).

In addition to SAVS, we expand on Hahn and Carvalho
(2015) and provide a multivariate extension to their least-angle
regression originally built for univariate regressions. Appendix
D.2 provides the full derivation as well as a complete discussion
of the drawbacks compared to SAVS. In addition, Appendix D.2
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reports the results of a direct comparison between the SAVS and
our multivariate extension to Hahn and Carvalho (2015) based
on simulated data.

3.3. Variational Predictive Density

Consider the posterior distribution p(ξ |z1:t) given the infor-
mation set z1:t = {

y1:t , x1:t
}

and the conditional likelihood
p(yt+1|zt , ξ). A standard predictive density takes the form,

p(yt+1|z1:t) =
∫

p(yt+1|zt , ξ)p(ξ |z1:t)dξ . (12)

Given an optimal variational density q∗(ξ) that approximates
p(ξ |z1:t), we follow Gunawan, Kohn, and Nott (2020) and obtain
the variational predictive distribution

q(yt+1|z1:t) =
∫

p(yt+1|zt , ξ)q∗(ξ)dξ

=
∫∫

p(yt+1|zt , ϑ , �t)q∗(ϑ)q∗(�t)dϑ d�t . (13)

Although an analytical expression for (13) is not available, a
simulation-based estimator for q(yt+1|z1:t) can be obtained
through Monte Carlo integration by averaging p(yt+1|zt , ξ (i))
over the draws ξ (i) ∼ q∗(ξ), such that q̂(yt+1|z1:t) =
N−1 ∑N

i=1 p(yt+1|zt , ξ (i)). Note that a complete characterization
of the optimal variational predictive density entails q∗(�t) with
�t = LᵀVtL. Proposition 3.5 shows that conditional on L and
Vt , the optimal distribution of �t can be approximated by a
d-dimensional Wishart distribution Wishartd(δt , Ht), where δt
and Ht are the degrees of freedom parameter and the scaling
matrix, respectively.

Proposition 3.5. The approximate distribution q̃ of �t is
Wishartd (̂δt , Ĥt), where the scaling matrix is given by Ĥt =
δ̂−1

t Eq [�t] and δ̂t can be obtained numerically as the solution
of a convex optimization problem.

The complete proof is available in Appendix C.1 and is based
on the Expectation Propagation (EP) approach proposed by
Minka (2001). In order to implement this approach, there is no
need to know q∗(�t), but it is sufficient to be able to compute
Eq(�t). The latter can be reconstructed based on the optimal
variational densities of the Cholesky factor q∗(β) – and therefore
for L – and of q∗(Vt). The simulation results in Appendix C.1
show that the proposed Wishart distribution provides an accu-
rate approximation of q∗(�t) for both small and large dimen-
sional models.

Based on Proposition 3.5, we can further simplify (13) by
integrating �t such that

q(yt+1|z1:t) =
∫

h(yt+1|zt , ϑ)q∗(ϑ)dϑ , (14)

where h(yt+1|zt , ϑ) denotes the probability density function of
a multivariate Student-t distribution tv(m, S) with mean m =
�zt , scaling matrix S = (vĤ)−1, and degrees of freedom
parameter v = δ̂ − d + 1. As a result, the predictive distri-
bution can be more efficiently approximated by averaging the
density of the multivariate Student-t h(yt+1|zt , ϑ (i)) over the

draws ϑ (i) ∼ q∗(ϑ), for i = 1, . . . , N, such that q̂(yt+1|z1:t) =
N−1 ∑N

i=1 h(yt+1|zt , ϑ (i)).
Note that the main advantage of the approximation obtained

from Proposition 3.5 is to allow for a considerably faster com-
putation of the variational predictive density, compared to using
q∗(L) and q∗(Vt) as stationary distributions to sample �t , sim-
ilar to an MCMC. This is because the scaling matrix of the
Wishart distribution is available in closed form, and the com-
putation of degrees of freedom requires only a one-dimensional
optimization. In Appendix C.2, we discuss a further simplifica-
tion that minimizes the KL divergence between the multivariate
Student-t and a multivariate Normal distribution.

4. Simulation Study

In this section, we report the results of an extensive simulation
study designed to compare the properties of our estimation
approach against both MCMC and variational Bayes methods
for large VAR models. To begin, we compare our VB algorithm
against the MCMC approach of Chan and Eisenstat (2018)
and Cross, Hou, and Poon (2020) and the variational inference
algorithm proposed by Chan and Yu (2022) and Gefang, Koop,
and Poon (2023). Both approaches are built upon the structural
VAR representation in (2b). In addition, we also compare our
VB method against the MCMC approach developed by Huber
and Feldkircher (2019) and Gruber and Kastner (2022), which
is based upon a nonlinear parameterization as in (2a).

For comparability with Gruber and Kastner (2022) and
Gefang, Koop, and Poon (2023), which do not consider the
presence of exogenous predictors, we consider a standard
VAR(1) as a data generating process. Consistent with the
empirical implementations, we set T = 360 and d = 30, 49. The
choice of d is due to the two alternative industry classifications
explored in the main empirical analysis. We assume either a
moderate—50% of zeros—or a high—90% of zeros—level of
sparsity in the true matrix �. The latter is generated as follows:
we fix to zero s · d2 entries at random, with s = 0.5, 0.9 and
d = 30, 49, and the remaining nonzero coefficients are sampled
from a mixture of two normal distributions with means equal
to ±0.08 and standard deviation 0.1. Appendix D provides
additional details on the data-generating process and additional
simulation results for d = 15.

4.1. Estimation Accuracy

As a measure of point estimation accuracy, we first look at the
Frobenius norm ‖� − �̂‖F . The latter measures the difference
between the true � observed at each simulation and its esti-
mate �̂. In addition, we compare the ability of each estimation
method to identify the nonzero elements in the true � based on
the F1 score. This is expressed as a function of counts of true
positives (tp), false positives (fp) and false negatives (fn),

F1 = 2tp
2tp + fp + fn

.

The F1 score takes value one if identification is perfect, that is, no
false positives and no false negatives, and zero if there are no true
positives. We compute both measures of estimation accuracy on
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Figure 2. Frobenius norm of � − �̂ across N = 100 replications, for different shrinkage priors and different inference methods.

N = 100 replications and compare each estimation method and
prior specification. The estimates from the MCMC specifica-
tions are based on 5000 posterior simulations after discarding
the first 5000 as a burn-in sample.

Point estimates. Figure 2 shows the box charts summarizing
the Frobenius norm ‖� − �̂‖F across N = 100 replications.
We label the linearized MCMC and variational methods with
LMCMC andLVB, respectively, withMCMC the nonlinear method
of Gruber and Kastner (2022) and with VB our variational
inference method. To increase readability, we separate the results
by prior and color-coding the four estimation methods. For
instance, for a given subplot, we report the results for the Nor-
mal, adaptive-Lasso, adaptive Normal-Gamma and Horseshoe
priors from the left to the right panel. Within each panel, the
simulation results for the LMCMC, LVB, MCMC, and VB estimates
are reported in red, yellow, light blue, and green, respectively.

Beginning with the moderate sparsity case (top panels), the
simulation results show that LMCMC and LVB approaches tend

to perform equally across different shrinkage priors, with the
only exception of the Normal-Gamma prior, whereby LMCMC
slightly outperforms LVB. However, the discrepancy between
the two structural VAR representation methods increases when
sparsity becomes more pervasive (see bottom panels).

Overall, the simulation results support our view that by elicit-
ing shrinkage priors directly on �—as per the parameterization
in (2a)—the accuracy of the posterior estimates improves. The
mean squared errors obtained from MCMC and VB are lower
compared to both LMCMC and LVB. This holds for all priors and
model dimensions. The accuracy with d = 30 of the MCMC and
VB is virtually the same. Yet, with d = 49, ourVB is slightly more
accurate than MCMC for the adaptive-Lasso and the Horseshoe
prior.

Sparsity identification. Figure 3 shows the box charts of F1
scores across N = 100 simulations. The labeling is the same
as in Figure 2. Both LMCMC and LVB produce a rather dismal
identification of the nonzero elements in � across prior and
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Figure 3. F1 score computed across N = 100 replications by looking at the true non-null parameters in � and the non-null parameters estimated based on �̂.

model dimensions. This is due to the fact that �̂ = L̂−1Â in (2b)
so that a sparse Â does not translate into a sparse �̂, and thus is
less accurate in identifying the nonzero coefficients in the true
�. When the level of sparsity increases, so does the divergence
between A and �.

Consistent with our argument in favor of the parameteriza-
tion in (2a), both the MCMC and VB approaches produce a more
accurate identification of the nonzero coefficients in �, as shown
by the F1 score. The gap betweenLMCMC,LVB, versusMCMC and
VB becomes larger for higher levels of sparsity. This result holds
across different hierarchical shrinkage priors and for different
model dimensions. Yet, our VB approach turns out to be more
accurate than MCMC under the adaptive-Lasso and Horseshoe
priors for higher sparsity levels.

Note that sparsity in the posterior estimates for �̂ for differ-
ent hierarchical shrinkage priors is induced in the simulation
results by using the SAVS algorithm of Ray and Bhattacharya
(2018). Appendix D.2 provides additional simulation results
obtained by implementing a multivariate version of the post-

processing method proposed by Hahn and Carvalho (2015) as
an alternative to the SAVS. The F1 scores are largely the same
across methods; in fact, the evidence is even more in favor of our
VB, compared to its MCMC counterpart when using the extended
Hahn and Carvalho (2015) approach: our VB is more accurate
than MCMC with a Normal-Gamma prior.

Computational efficiency. Figure 4 reports the computational
time—expressed in a log-minute scale—required by each com-
peting estimation approach under different shrinkage priors. To
highlight the performance for a given prior, we separate the
results by estimation methods and color-coding the four differ-
ent shrinkage priors. For instance, for a given subplot, we report
the results for the LMCMC, LVB, MCMC, and VB estimates from
left to right panel. Within each panel, the Normal, adaptive-
Lasso, adaptive Normal-Gamma, and Horseshoe priors are col-
ored in shades of gray from light (left) to dark (right) gray,
respectively. To guarantee more reliable comparability, we re-
coded all competing methods in Rcpp and used the same 2.5
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Figure 4. Computational time required by each estimation approach for different hierarchical shrinkage priors. The time is expressed on a log-minute scale.

GHz Intel Xeon W-2175 with 32GB of RAM for all implementa-
tions. This allows us to compare all methods on an equal footing.

The results highlight that our VB approach has a clear com-
putational advantage compared to linear and nonlinear MCMC
methods. For instance, for d = 30, our VB is more than 100
times faster than the MCMC of Gruber and Kastner (2022) and
more than 10 times faster than the LMCMC of Cross, Hou, and
Poon (2020), respectively. The gap in favor of our VB method
increases in larger dimensions; for d = 49, the MCMC approach
takes on average almost 60 min to generate posterior estimates
which are comparably accurate to our VB, which instead takes
on average between 30–40 sec for the estimate. Such an effi-
ciency gap has profound implications for a practical forecast-
ing implementation, especially within the context of recursive
predictions with higher frequency data such as stock returns
(see Section 5.2). Perhaps not surprisingly, the LVB approach
of Chan and Yu (2022) and Gefang, Koop, and Poon (2023) is
highly competitive in terms of computational efficiency. How-
ever, being built on a structural VAR formulation, Figures 2 and

3 show that the computational efficiency of the LVB approach
comes at the cost of substantially lower estimation accuracy.

Appendix E.1 provides a further qualitative discussion on the
computational costs of some of the existing MCMC approaches.
We review some of the results reported in the original papers and
show that these largely align with our own findings. In addition,
we also discuss some of the limitations of the nonlinear MCMC
for the recursive forecasting implementation.

Robustness to variable permutation. At the paper’s outset, we
argue that a conventional structural VAR formulation poten-
tially generates posterior estimates sensitive to variable permu-
tation. That is posterior estimates of � depend on the ordering
imposed on the target variables yt , conditional on a given prior.
To highlight this issue, in Appendix D, we report additional sim-
ulation results for all estimation methods and shrinkage priors
under variable permutation. The results show that the accuracy
of the posterior estimates from both LMCMC and LVB changes
once the variable’s ordering is reversed (see Figure D.4). This
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is especially evident for the Normal-Gamma and Horseshoe
priors and when zero coefficients in � are more pervasive.
On the other hand, the estimation accuracy of both the MCMC
approach of Gruber and Kastner (2022) and our VB method do
not substantially deteriorate by arbitrarily changing the ordering
of the target variables.

Note that although our approach provides estimates and
point predictions that are robust with respect to variable order-
ing, density forecasts might differ. To address this issue, Arias,
Rubio-Ramirez, and (2023) propose a time-varying correlation
matrix model based on the parameterization of Archakov and
Hansen (2021). Still, the latter is computationally intensive and
may not be suitable for large datasets. As shown by Chan,
Koop, and Yu (2023), a decomposition �t = LᵀVtL, where L
is an unrestricted square matrix rather than lower-triangular,
represent a valid alternative toward permutation invariance in
high-dimensional settings.

5. A Empirical Study of Industry Returns Predictability

We investigate both the statistical and economic value of our
variational Bayes approach within the context of US industry
returns predictability. To expand the scope of the empirical
exercise, we consider two alternative industry aggregations: d =
30 industry portfolios from July 1926 to May 2020 and a larger
cross-section of d = 49 industry portfolios from July 1969
to May 2020. The size of the cross sections changes due to a
different industry classification. At the end of June in year t, each
NYSE, AMEX, and NASDAQ stock is assigned to an industry
portfolio based on its four-digit SIC code. Thus, the returns on
a given value-weighted portfolio are computed from July of t to
June of t + 1. The sample periods cover major events, from the
great depression to the Covid-19 outbreak.

In addition to cross-industry portfolio returns, we consider a
variety of predictors, such as the returns on the market portfolio
(mkt), and the returns on four alternative long-short investment
strategies based on market capitalization (smb), book-to-market
ratios (hml), operating profitability (rmw) and firm investments
(cma) (see Fama and French 2015). We also consider a set of
additional macroeconomic predictors from Goyal and Welch
(2008), such as the log price-dividend ratio (pd), the difference
between the long term yield on government bonds and the T-
bill (term), the BAA-AAA bond yields difference (credit),
the monthly log change in the CPI (infl), the aggregate mar-
ket book-to-market ratio (bm), the net-equity issuing activity
(ntis) and the corporate bond returns (corpr).

5.1. In-Sample Parameter Estimates

In order to highlight some of the main properties of each
method, we first report the in-sample estimates of � for the
d = 49 industry case for all priors. Figure 5 compares �̂

based on the full sample obtained from the LMCMC and the
LVB with constant volatility, and our VB with and without
stochastic volatility. Appendix E.3 reports the additional in-
sample estimates for d = 30 industry portfolios.

The in-sample estimates highlight three key results. First,
there are visible differences across shrinkage priors. For instance,

the Horseshoe tend to shrink parameters more aggressively
toward zero so that �̂ is more sparse than, for example, the adap-
tive Normal-Gamma. Second, consistent with Gefang, Koop,
and Poon (2023), the estimates of the LMCMC and LVB tend to
be closely related. Yet, these in-sample estimates are substantially
different compared to our VB approach. This is due to the
parameterization �̂ = L̂−1Â in (2b). Third, with the excep-
tion of the adaptive-Lasso prior, the estimates �̂ from VB are
remarkably stable between constant versus stochastic volatility
specifications.

5.2. Out-of-Sample Forecasting Accuracy

Intuitively, different estimates of � should be reflected in differ-
ent conditional forecasts. To test this intuition, we now compare
the LMCMC, LVB, and the VB estimation approaches with and
without stochastic volatility. For completeness, we also consider
a series of univariate model specifications (U henceforth), which
is akin to assuming conditional independence across industry
portfolios. We consider a 360-month rolling window period
for each model estimation; for instance, for the 30-industry
classification, the out-of-sample period is from July 1957 to May
2020.

Given the recursive nature of the empirical implementation
and the extensive out-of-sample period, we do not consider the
MCMC approach of Gruber and Kastner (2022). This is because
the computational cost would make such implementation pro-
hibitive in practice, as discussed in the simulation study based
on Figure 4. For instance, on a 2.5 GHz Intel Xeon W-2175
with 32GB of RAM and 14 cores, it would take 20 min ×
767 forecasts × 4 priors = 61,360 min, or 42 days, to recursively
implement the MCMC approach for the 30 industry portfolios
with constant volatility. The computational cost would be even
larger when adding stochastic volatility or for the 49 industry
portfolios. Appendix E.1 provides a complete discussion of the
computational costs of some of the existing MCMC approaches
and the key relevance for a higher-frequency forecasting imple-
mentation, such as ours.

Point forecasts. We begin by inspecting the accuracy of point
forecasts for each industry based on the out-of-sample predictive
R2 (see, e.g., Goyal and Welch 2008),

R2
j,oos (Ms) = 1 −

∑T
t0=2

(
yjt − ŷjt (Ms)

)2

∑T
t0=2

(
yjt − yjt

)2 ,

where t0 is the date of the first prediction, yjt is the naive forecast
from the recursive mean – using the same rolling window of
observations – and ŷjt (Ms) is the conditional mean returns for
industry j = 1, . . . , d for a given estimation method Ms.

The left panels of Figure 6 show the box charts with the
distribution of the R2

j,oos over the j = 1, . . . , d industries. For
a given subplot, the results for the Normal, Bayesian Lasso,
Normal-Gamma and Horseshoe priors are reported from the
left to the right. Within each panel of a subplot, the forecasting
results for the U, LMCMC, LVB, and VB estimates are color-
coded in orange, red, yellow, and green (from left to right),
respectively. The vertical dashed line within each panel separates
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Figure 5. Variational Bayes estimates of the regression coefficients � for different estimation methods. We report the estimates for the d = 49 industry case obtained for
all priors. We report the results for VBwith and without stochastic volatility.

between constant and stochastic volatility specifications. Based
on the same separation across methods and priors, the right
panels of Figure 6 report a breakdown of the industries for which
R2

j,oos (Ms) > 0.
The out-of-sample R2

j,oos (Ms) tends to be mostly nega-
tive across estimation methods and shrinkage priors. This
is consistent with the existing evidence on stock returns

predictability: a simple naive forecast based on a rolling sample
mean represents a challenging benchmark to beat (see, e.g.,
Campbell and Thompson 2007). However, our variational
inference approach substantially improves upon univariate
regressions and the LMCMC, LVB methods, which are both
based on a structural VAR representation. For instance, our
VB with stochastic volatility generates a positive R2

j,oos (Ms)
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Figure 6. Left panels report the R2
j,oos (Ms) (in %) across industry portfolios. Right panels report the industries for which a given model can generate R2

j,oos (Ms) > 0.
The top (bottom) panels report the results for 30 (49) industry portfolios.

for more than half of the 30 industry portfolios based on the
adaptive Normal-Gamma and the Horseshoe. This compares
to 4 (adaptive Normal-Gamma) and 3 (Horseshoe) positive
R2

j,oos (Ms) obtained from LMCMCwith stochastic volatility. The
gap further increases for the 49-industry classification; our VB
method is virtually the only approach that can systematically
generate positive R2

j,oos (Ms) across industries. Although more
concentrated on the Horseshoe prior, the out-performance
of our method relative to both LMCMC and VB holds across
different priors.

Density forecasts. We follow Fisher et al. (2020) and assess the
accuracy of the density forecasts across priors and estimation
methods based on the average log-score (ALS) differential with
respect to a “no-predictability” benchmark,

ALSj (Ms) = 1
T − t0

T∑
t0=2

(
ln Sjt (Ms) − ln Sjt

)
, (15)

where ln Sjt (Ms) denotes the log-score at time t for industry
j obtained by evaluating a Normal density with the conditional
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Figure 7. Left panels report the log-score differential across industry portfolios. Right panels report the industries for which a given model can generate a positive log-score
differential. The top (bottom) panels report the results for 30 (49) industry portfolios.

mean and variance forecast from the modelMs. Consistent with
the rationale of the no-predictability benchmark in R2

j,oos (Ms),
the log-score for ln Sj,t is constructed by evaluating a Normal
density based on recursive mean and variance.

Figure 7 reports the results. The labeling is the same as in
Figure 6. The results show that by adding stochastic volatility,
the accuracy of density forecasts substantially improves across
priors and estimation methods. For instance, our VB method
with stochastic volatility generates positive log-score differen-
tials for almost all of the portfolios for the 30 industry classi-
fication and for more than half of the 49 industry portfolios.

Interestingly, when it comes to density forecasts rather than
modeling expected returns, the Gefang, Koop, and Poon (2023)
variational method built on a structural VAR representation
performs on par with our VB method. This is likely due to
stochastic volatility alone since our VB still stands out within
the constant volatility specifications. Overall, our VB approach
outperforms the competing estimation methods under all prior
specifications.

Returns predictability over the business cycle. Existing litera-
ture suggests that expected returns are counter-cyclical and that
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Figure 8. The figure reports the industries for which R2
j,oos (Ms) > 0. The left (right) panel report the results for 30 (49) industry portfolios.

returns predictability is more pronounced during periods of eco-
nomic contractions versus expansions (see, e.g., Rapach, Strauss,
and Zhou 2010). Thus, in the following, we investigate if the fore-
casting performance of our estimation framework changes over
the business cycle. More precisely, we split the data into recession
and expansionary periods using the NBER dates of peaks and
troughs. This information is considered ex-post and is not used
at any time in the estimation and/or forecasting process. We
compute the corresponding R2

j,oos (Ms) for the recession periods
only.

Figure 8 reports the industries for which R2
j,oos (Ms) > 0 for

both the 30 (left panel) and the 49 (right panel) industry clas-
sification. The corresponding cross-sectional distribution of the
R2

j,oos (Ms) and the relative log-scores are reported in Appendix
E.2. The labeling of Figure 8 is the same as in Figure 6. By
comparing Figure 8 with the full sample, the results suggest that
the accuracy of the predictions substantially improves across
methods and priors. Nevertheless, our VB method outperforms
the naive forecast from the rolling mean for a larger fraction
of industry portfolios compared to other methods, in particular
when stochastic volatility is added to the model. The difference
between the recession and the full-sample performance persists
when considering the 49 industry classification, especially for
the adaptive Normal-Gamma and the Horseshoe prior.

5.3. Economic Evaluation

A positive predictive performance does not necessarily translate
into economic value. However, in practice, an investor is keenly
interested in the economic value of returns predictability, per-
haps even more than the statistical performance. Hence, it is of
paramount importance to evaluate the extent to which apparent
gains in predictive accuracy translate into better investment
performances.

Following existing literature (see, e.g., Goyal and Welch 2008;
Rapach, Strauss, and Zhou 2010), we consider a representative
investor with a single-period horizon and mean-variance pref-
erences who allocates her wealth between an industry portfolio
and a risk-free asset. Thus, the investor optimal allocation to
stocks for period t + 1 based on information at time t is given
by wjt = 1

γ

ŷjt
ν̂−1

jt
, where ŷjt represents the expected return for

industry j = 1, . . . , d and ν̂−1
jt the corresponding volatility

forecast at time t. We also constrain the weights for each industry
to −0.5 ≤ wjt ≤ 1.5 to prevent extreme short sales and
leveraged positions. We assume a risk aversion coefficient of
γ = 5.

Figure 9 reports the average utility gain—in monthly %—
obtained by using a given forecast ŷjt instead of the recursive
sample mean yjt . The average utility for a given model is calcu-
lated as ûj = rj − 0.5γ σ 2

j where rj and σ 2
j represent the sample

mean and variance, respectively, of the portfolio return rjt+1 =
wjtyjt+1 realized over the forecasting period for the industry
j = 1, . . . , d under a given prior specification and estimation
method. The utility gain is calculated by subtracting from the
average utility ûj the average utility obtained by using the naive
forecast from the recursive mean and variance to calculate wjt .
A positive value for the utility gain indicates the fee a risk-
averse investor is willing to pay to access the investment strategy
implied by Ms.

The out-of-sample economic significance largely confirms
the statistical performance across methods. From a purely eco-
nomic standpoint, the forecast from a recursive mean is quite
challenging to beat: we observe that the average utility gain is
mostly negative, with the only exception of those provided by
VB with a Horseshoe prior specification. The results show that
a representative investor with mean-variance utility is willing to
pay, on average, a monthly fee of almost 15 basis points to access
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Figure 9. The left panel reports the cross-sectional distribution of the average utility gain across industry portfolios. The right panel reports the industries for which the
utility gain is positive. The top (bottom) panels report the results for the 30-industry (49-industry) classification.

the strategy based on our variational estimation of a large VAR
with stochastic volatility. In addition, the right panels of Figure 9
show that the positive economic value obtained from our VB is
more broadly spread across industries than alternative methods.
This holds especially true for the 30-industry classification but
applies to the more granular 49-industry classification.

6. Concluding Remarks

We propose a novel variational Bayes inference method for
large-scale VAR with exogenous predictors and stochastic

volatility. Different from most existing estimation methods
for high-dimensional VAR models, our approach does not
rely on a structural form representation. This allows fast
and accurate estimation of the model parameters without
leveraging on a standard Cholesky-based transformation of the
parameter space. We show both in simulation and empirically
that our estimation approach outperforms across different prior
specifications, both statistically and economically, forecasts from
existing benchmark estimation strategies, such as equivalent,
nonlinear MCMC algorithms (see, e.g., Gruber and Kastner
2022) linearized MCMC (see, e.g., Cross, Hou, and Poon 2020)
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and linearized variational inference methods (see, e.g., Gefang,
Koop, and Poon 2023).

Supplementary Materials

The supplementary material contains the proof and derivations of all propo-
sitions and theoretical results in the paper. The supplementary material
contains also additional simulation and empirical results. These additional
results have also been briefly discussed in the main text of the paper. The
R code pertaining to the variational inference scheme developed in the
paper can be found at this link: https://github.com/whitenoise8/Variational-
inference-for-large-Bayesian-vector-autoregressions.
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